
���������	
����
��

����������	�
��	��
����������

������
��	���	�����
�������������	��
��

����������������������������

�������� !""#

�����������������������

���������������

����������	���
���
��
������
��
���

�

���� !�����
!��	�

���������	
����
���"
��#�
����
������$��%
�������&'��(
�����������)�����������
�*������	

����+(
�����(
�)���
�,�

��
�-&)*+),�����.

&��
��
��/��
�0�,����������1������
�2�

��(�

#,,/�����34456�-����
.

#,,/�����345"6�-#�
����
.

�(���
������������
�����

/��
�0�,�����

$���

�!�4

���6��������

�������

�

�&��
������������������

ii

$	�������%�������

��&���	������������%�	
�� �����

���
���
������������������������������� �� ������

����������$�	������	�
������'����(������	���
�
������	���
��)���	��%�����	�
��

���	�
���
�����
������
����	���	�������	��
�� �����

*
��	���
�	���+�	���
���%��������
���������������������	��
���)��'����

����	������	��� �����

�������
�	�
������,����
�������
��������&��������-��
�������	��
��

��������������		����
�������
���������	 �!"��#��	��$�
�		��������
"	����������������������

��&��������*�	��.
����
���%�����'
���%�	��
���/���������*�	��.
����
��

�
���
������%�����"����
	�&"��
����	��'
������(�%��)�

0�
���%&�1���'
������	��&����������.
�2�����(��
�
�	�
���/�������

*������+��,����	��+��	���-	�.��� ���)/

�����
�������������)���	��)��'�����
��%����������/	�	��������	��

$�
�		��������
"	��� ���0�

iii

�

iv

$�'	������	��
���������

��
�������&���	������������%�	
��

$�� �(�����%��
�� ���������(�
��
���"
�� #�
����
������$��%
�������&'��(
�����������)���7

��������
�*������	�����+(
�����(
�)���
�,�

��
��&)*+),�����!� �0��
�����8
�&)*+),� ��%7

����
�%�
��������
�
���90$�:��'��
�
�����+�������,������
����������������������������������

����!

0���&)*+),� ��%
�����
����������� �
����
�����������������
���	���
��
������'��(
�����������

������������
��������	���
���
�
����%��
���������
(�
����������(
�����(
�����
�
�

��
!�

0������	�
����	�����
�
����'�������
���
�
��
������������
�
�

��
�
��������������
��������7

��
����������
��(�(
���
���(����
����
���� �
��
�����'�������
! � � #��������
�������'��
��
��

��
���
������;�������
��
�������%��
���
����������
(�
���������
����
����

��
�	��
������

���
���������
�
(�
���
���� ������������ ����
(�����

����(
�
�����'�������
����������
�����!

0�����
����
����
���������
��
�����������	
�����

��
�����	�
��
� ��!� �$�������
��
�
��������

��'���
���(
��(��
�
��������
�������
���
�
�������'��
������	�
������
������	���!

,�;������
���'������������
�������
���&)*+),������ ��%
���!�0����������
���
�(

���	���
��
�

��
���'�������(
���������������

��
������
���������
��������������� �
��
�����'�������

�

�����������
���	���
��
�
��
����������������
�����������

!��#��������
��	�'����
�������
����������

����
�(

�
����� ��%��
����������

�	��
��
����������	
�'��(�����
������(��
�
���
������
�����7

������

�
����

!

$�� �(�����%��
��
���%�
������	���������

���������
� ������'�����'����	�������������(��

��'��
!��$��������
���
��������������
���
��
����(
���
����
�����
����
�
��
�
��
��
� ��%
��������

���'����	�
�����
������
����%��(
�
���%�������
�(

!

#
���
��������	���
�����
(�����	���
��	�
��
��'��
����� ������������
�����
(����
������
(�����

���	�
���������
�������
!��$��
��������������
��
���(���<���
��� ��%
�������� �����%����7

 ����� �
����(��������
�����
��(���(�����	���

���	�����(��
�����(���
��
��'��
����
����(
(��!

/��
�0�,����������1������
�2�

��(���=����
��&)*+),������$��%
���!

v

�

vi

(��	�
�	�
����������������� !""�
�������

��������%�	
��

/��
�0�,�����

�(�����	�+(
���
����*��

�����
���
����&�	�������	�#

90$�:��'��
�
�����+�������,������

����������������

1������
�2�

��(�

)�
���������(��)���
��

��2#�*���������

:��'��
�
�����������

����������������

/����	����%���
����

��3��	���.���
��+��#�

�
(
���
�,�

>��
�#�
����	��

��
����)���
�?(���:��'��
�
@���������
�A�����=(�����

����
��������!

/�����.4����,����,�

��
�0�������	��
�*�����
����
��0�%����B����!

���5�6������������=�	��
�'��,�

��
����(���:��'��
�
��������������������!

6	���
���,���5��, �

�+#�*���#�,#+��*(�����, �
C������!

$����*������������
���
����=���(
���,��������:��'��
�
�����0�;�
��
�+(

����:,+!

%��
��
	��������0���#��	�����(��������
���
����=���(
���,��������:��'��
�
�����=������	����

������%!

7�	�18	��
����&�������#�

�
(
���
�,�

>��
�#�
����	��

��
����)���
�?(���:��'��
�
@���������
�A�����

=(���������
��������!

7	��/�������#�
����	��
�+(
�����(
�,�

��
����(���=���(
���,������������
���
��0���������:��'��
�
��

����

��
���������!

.	�
���/��	�
�������
���
����=���(
���,��������:��'��
�
�����9��
����
������9�
�������:2!

����	�����
������2�� ���	�3��
���,�

��
����(��������
���
����=���(
���,��������)$09�+������

:��'��
�
����������!

�
��	������������������
���
����=���(
��	�,��������:��'��
�
�����+����
���&����
����=�����!

����
�1.	����	��������
���
����A������
�
�������
����A�������
�����A����
�����
��0���������

:��'��
�
�����=�(<3/�������)������!

&	����'���$	�����������
���
����=���(
���,��������*�����

��=����	���&�

����:,+!

vii

�

viii

About the Transformation between Output and Weight
Space in Neural Computation

Jörn Fischer1, Thomas Ihme and Andreas Knecht

Abstract. Time-discrete recurrent neural networks are complex dy-

namical systems. In the research area of the synthesis and analysis

of such networks it would be desirable to have an algorithm which

offers the ability to transform a given neural trajectory directly into

a set of neural weights. Though non-linear transfer functions seem

to aggravate this problem crucially, such an algorithm is found using

the inverse of the transfer function and a least squares approach to

find the optimal weights. This constructive method is presented in

detail and discussed on different examples.

1 Introduction

Time-discrete recurrent neural networks offer a wide field of

research area covering a large number of different disciplines.

Though the subject of these disciplines might differ a lot, most

of them have in common that they try to determine coherences

between the topology of a network including the strength of neural

interconnection and its behavior. Non-linearities of the neural

transfer function aggravate the exploration of such coherences and

often methods as gradient descent [7, 8], or evolutionary techniques

are chosen to find network structures which result in a desirable

predetermined mapping between input and output neurons.

On the other hand, fixed network structures of recurrent neural

networks are analyzed to understand their behavior. Detailed

description is only found for few types of networks, especially for

those with symmetric weight matrices [4, 1, 2], for small neural

entities [9, 10, 11, 6], or for very large networks called reservoirs [5].

In this context it could be helpful if we could proof that a network

with a given attractor exists. It would be desirable if we could

analyze the influence of phase shifts between different neural output,

if we could change the amplitude of a trajectory or if we could prove

or disprove the existence of a network with given trajectory.

The following article describes a method to transform a given

n-dimensional trajectory into a weight matrix of n neurons. Finally

the method is discussed and demonstrated on different examples.

2 Basic definitions

The following equations are given to clarify the mathematical base.

The activity of a discrete-time neuron is defined as follows:

ϕt+1

j = θj +

n∑

i=1

wjio
t
i(ϕ

t
j) (1)

1 Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163
Mannheim, Germany, email: j.fischer@hs-mannheim.de

Here ϕj denotes the activity of neuron j, wji ∈ R is the weight from

neuron i to neuron j, θj is the bias term and oti ∈ R is the output

activity of the neuron i at time t ∈ N. The output as a function of

ϕt
j is given by the transfer function, which could be the standard

sigmoid:

otj(ϕ
t
j) = σ(ϕt

j) =
1

1 + e−ϕt
j

(2)

As long as we use transfer functions, which are invertible, it is pos-

sible for each time step t to calculate the ϕt
j from the corresponding

otj . If the transfer function is the standard sigmoid (see equation 2)

the inverse is calculated as

ϕt
j(o

t
j) = −ln(

1

otj
− 1). (3)

The first approach to reconstruct a given trajectory is the following:

If we know the output otj and with this the activity ϕt
j(o

t
j) of all

neurons for t = 1..(n+2) successive time steps, with equation 1 for

each of the n neurons a system of n+1 linear equations results to be

solved with n weights and 1 bias as variables:

−ln(
1

ot+1

j

− 1) = θj +

n∑

i=1

wjio
t
i (4)

If this system of linear equations is solvable and if we start with the

network output initialized with ot=0
i , then the resulting network will

follow the given trajectory oti for n + 1 time steps. How the neural

network behaves after these steps is previously unknown.

3 A simple example

As an example the following table shows the output values of two

neurons for four time steps.

t o1 o2
1 0.2500001 0.604037

2 0.2549832 0.647125

3 0.2697353 0.684348

4 0.2936664 0.714222

From this table, with the help of equation 3, we can derive the activity

of all neurons in each time step:

t ϕ1 ϕ2

1 -1.098612 0.422315

2 -1.072210 0.606426

3 -0.995967 0.773826

4 -0.877645 0.915979

4th International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2011)
Berlin, Germany, December 9 2011

1

Now using equation 1 we get three linear equations for each neuron:

−1.072210 = θ1 + 0.2500001w11 + 0.604037w12 (5)

−0.995967 = θ1 + 0.2549832w11 + 0.647125w12 (6)

−0.877645 = θ1 + 0.2697353w11 + 0.684348w12 (7)

and

0.606426 = θ2 + 0.2500001w21 + 0.604037w22 (8)

0.773826 = θ2 + 0.2549832w21 + 0.647125w22 (9)

0.915979 = θ2 + 0.2697353w21 + 0.684348w22. (10)

Solving these equations we receive the corresponding weights and

biases:

weight value

θ1 -3.045571

w11 5.021175

w12 1.188780

θ2 -1.697853

w21 -0.235685

w22 3.912343

4 The Least Mean Squares approach

Least Mean Squares (LMS) is a quite successful method for approxi-

mating an overdetermined set of data. The simplest case is the linear

regression, where a straight line, a plane or a hyper plane is fit to a

set of predetermined data points. To find the best gradient and in-

tercept the LMS-algorithm minimizes the sum of square errors for k
coordinates, which is the sum of squared distances between the data

points and the straight line, plane or hyper plane. This works quite

well even for an n-dimensional space, assuming that the number of

data points k is higher than the number of dimensions n.

Coming back to neural computation the following question arises:

If we have a desired output Ot
j for more than n + 2 time steps, is it

possible to calculate a weight matrix which approximates this trajec-

tory using the LMS-algorithm? The Answer is: Yes it is! To calculate

the weights of a network from these desired output values, we would

have to minimize the square errors
∑

t
(otj −O

t
j)

2 between the real

output of an output neuron j and the target value O
t
j for all times

t. But replacing otj by σ(θj +
∑

i
O

t−1

i wji) would result in a sys-

tem of nonlinear equations. At this step another view is introduced,

which simplifies the problem essentially: Instead of minimizing the

Mean Square Error MSE of the output of the neurons, we minimize

the MSE of the neurons activity. The solutions of both methods are

identical, if the trajectory to be learned ”exists” exactly. We replace

θ by wj0 with i ∈ [0..n] and define O
t
0 = 1 for all times t to sim-

plify the following equations. The square error of the activity ϕt+1

j

of neuron j is

(ϕt+1

j − ϕt+1

target)
2

(11)

((
∑

i

otiwji) + ln(
1

O
t+1

j

− 1))2. (12)

We replace oti by O
t
i , pretending that the output and the target values

are nearly identical. To find a minimum of this square error of the

activity of neuron j the derivative of the sum over all time steps of the

square error functions is calculated and set equal to zero as follows:

∂
∑

t
(
∑

i
O

t
iwji + ln(1

O
t+1

j

− 1))2

∂wjk

= 0 (13)

which results in

∑

t

2Ot
k(
∑

i

O
t
iwji + ln(

1

O
t+1

j

− 1)) = 0 (14)

Where j is the neuron of which the incoming weights are to be op-

timized and k = [0..n] and i = [0..n] are indices running over all

biases and neurons in the network. For each neuron j with k = [0..n]
a system of n + 1 linear equations results which may be solved e.g.

with the Gauss elimination algorithm and an expense of O(n3). It is

not necessary to calculate the second derivative to decide whether the

weights define a sattle point a minimum or a maximum of the error

function. The sum of the error function has no sattle point, because

it is of parabolic shape. It has no maxima, because it has a positive

sign. So the result must be an absolute minimum.

5 A quasi periodic attractor

The first experiment is given by calculating a two neurons weight-

matrix for an output given by the functions

f1(t) = 0.5sin(t/10.0)2 + 0.25 (15)

and

f1(t) = 0.5sin(t/10.0 + 1.0)2 + 0.25. (16)

So one could ask: ”How could we know that such functions are re-

producable by the network?” The answer is simple: ”We do not know

if the trajectory is reproducable until we try it out.” So we calculate

a weight matrix using the functions f1 and f2 as target (see fig. 1),

minimizing the MSE within 100 time steps.

Figure 1. This is the target attractor.

The mean square error of these trained trajectories for the output is

MSE = 0.003548. The trajectory is stable (see Fig. 2) and looks

quite similar to the original shown in Fig. 1.

4th International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2011)
Berlin, Germany, December 9 2011

2

Figure 2. This is the output for the network calculated from the target
trajectories f1(t) and f2(t) (equation 15 and 16). The following weights

result: w11 = 4.592138, w21 = −0.934564, w12 = 0.938969,
w22 = 3.813414, θ1 = 2.765417, θ2 = 1.439541.

6 A chaotic neural attractor

To be able to reconstruct a neural network with chaotic attractor

often results in several problems. Using gradient descent leads to

oscillations of the weight values and to slow convergence. Such

difficulties result from bifurcations in the activation dynamics of the

neural output.

With the described LMS-method these problems do not exist.

The following example shows, that it is possible to reconstruct

a network which produces a chaotic attractor. Fig. 3 shows the

logistic map and the corresponding Lyapunov exponent λ of a

two neuron network with five fixed and one variable weight. The

Lyapunov exponent λ is a measurement for the dynamical behavior

of a system. λ > 0 means that the attractor is chaotic. We choose

one parameter set with λ > 0 e.g. θ1 = −4, θ2 = 4, w12 = 10,

w21 = −10, w22 = 0 and w11 = 6 (λ ≈ 0.0177).

We generate some output data as follows:

t o1 o2
1 0.770719 0.00978897

2 0.673092 0.0239584

3 0.569089 0.0611735

4 0.506566 0.155659

5 0.644739 0.256229

6 0.91914 0.0796299

7 0.909795 0.00553343

With equation 14 a system of 6 linear equations results, where the

6 variables correspond to the self connections of both neurons, the

interconnections between the neurons and the threshold of each neu-

ron. To reconstruct the weights and thresholds we just have to solve

the system of linear equations. A short C-program with low precision

and bad rounding leads to the following values:

weight value

θ1 3.9999

w11 5.9999

w12 9.9999

θ2 -3.9999

w21 -9.9999

w22 0.0001

Figure 3. Top: the logistic map of a two neuron ensemble with the weights
θ0 = −4, θ1 = 4, w12 = 10, w21 = −10, w22 = 0, while w11 is tuned

from 0 to 7. Bottom: the Lyapunov exponent shows where the network
produces a chaotic behavior (λ > 0) and where we could pretend a fixed

point attractor (λ < 0).

7 A real world application: Network Shrinking

To know the size of a network architecture from what it should be

able to learn is not a trivial estimate. Starting with a large network

with many neurons could lead to convincing results [3], but is it

possible to reduce the number of neurons without destroying the

dynamical properties of the rest of the network? What if a quasi

periodic attractor becomes a fixed point attractor? What if a periodic

attractor turns into a chaotic one? The question is: How could we

cut out one neuron with a minimal change of the trajectories of the

remaining neurons? The usual strategy is to cut out those neurons,

which have the smallest connection weights and therefore have the

smallest influence on the rest of the network. In general this is done

without adapting the weights of the remaining neurons.

This strategy is not really satisfying because in most cases

nearly all neurons of a trained network are massively connected

to others. There are usually no ”light weighted” candidates which

could be neglected.

To make things more clear we present a toy example as follows:

Given a network with two output and one hidden neuron as shown

in fig. 4: is it possible to cut out the hidden neuron without destroy-

ing the quasi periodic attractor? As we can see in fig. 5 it is. For

this toy example one might find a solution without the Least Mean

Squares method: Having a closer look at the figure one will find that

4th International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2011)
Berlin, Germany, December 9 2011

3

Figure 4. A toy example: two output neurons (left and right) and one
hidden neuron (center) generating a quasi periodic attractor. How can we cut

out the hidden neuron without changing the attractor?

the output 2 neuron has the same inputs as the hidden neuron. This

means that it also will generate the same output as the hidden neu-

ron. Cutting the hidden neuron out without adapting the weights is a

bad idea. The attractor would get stuck in a fixed point. Instead we

have to transfer the connection from the hidden neuron to the output

1 neuron as a connection from the output 2 neuron to the output 1

neuron as shown in fig. 5. Then we can delete the hidden neuron.

The LMS-Method directly leads to the desired network, even if the

network is much more complex. The algorithm is proven to work

with thousands of neurons and connections.

Figure 5. Toy example: The reduced network producing the same attractor.
The output connection from the hidden neuron is transferred to the output 2

neuron.

8 Discussion

The procedure presented is efficient for all kinds of trajectories. It is

possible to reproduce fixed point, periodic, quasi periodic and chaotic

behavior. The only condition for successful reproduction is that the

given attractor fits into the network. To get an idea about how much

data fits into an n-neuron network we may think of a simple linear

regression task, where a straight line should be fit to a set of data

points. In this case we have two variables: the gradient and the in-

tercept. Using two data points it can be guaranteed, that the line will

exactly contain both points. If we have three data points in three di-

mensions we may guarantee that the approximated plane contains

these three data points. This means that if we have an n-dimensional

neural network, we could approximate n data points exactly. All fur-

ther data points lead to a deterioration of the quality of the reproduced

trajectory. On the other hand attractors of periods p < n+1 or fixed

point attractors may lead to a system of equations which is over de-

termined. There are more variables (weights) than equations. In this

case we might predefine (n+ 1)− p weights e.g. with wij = 0 and

compute the rest of the weight matrix in order to get a network which

follows the given attractor.

9 Conclusion

The findings presented in this paper show up the duality of the

weight- and the output space of a neural network. Once the output

trajectory is known for a minimum of n+2 time steps for a network

with n neurons, the weights of the network may be reconstructed

directly in one step. The described LMS-method is efficient and easy

to apply to any given period of output trajectories as there are fixed

point attractors, quasi periodic, periodic or chaotic neural network

trajectories.

In this work the Method is approved to networks with attrac-

tors of different dynamical properties. To show that the finding is

not only a useless theoretical construct we demonstrate an efficient

shrinking method for recurrent neural networks.

We might use the LMS-Method for network recovery as an an-

alyzing tool. We could induce amplitude changes or phase shifts

between different outputs, we even could try to reconstruct small

networks with slowly changing weights at different time intervals

(assuming that the weights are nearly constant during that interval)

and to see how the weights are changing from one point in time

to another. May be even the learning rule, assuming that it is an

unsupervised one, might be extracted.

If the method could be adapted to simple models of biological

neurons is one of the multitude of open questions. Our hope is to

find answers to some of them.

REFERENCES

[1] T. J. Sejnowski D. H. Ackley, G. E. Hinton, ‘A learning algorithm for
bolzmann machines’, Cognitive Science, 9, 147–169, (1985).

[2] R. Salakhutdinov G.E. Hinton, ‘Reducing the dimensionality of data
with neural networks’, Science, 313(5786), 504–507, (2006).

[3] H. Haas H. Jäger, ‘Harnessing nonlinearity: predicting chaotic systems
and saving energy in wireless telecommunication’, Science, 304 no.

5667, 78–80, (2004). recurrent neural networks.
[4] J. Hopfield, ‘Neural networks and physical systems with emergent col-

lective computational abilities’, in PNAS USA, 79, pp. 2554–2558,
(1982).

[5] H. Jäger, ‘The echo state approach to analysing and training recurrent
neural networks’, Technical report, German National Research Institute
for Computer Science, (2001).

[6] F. Pasemann, ‘Structure and dynamics of recurrent neuromodules’,
Theory in Biosciences, 117, 1–17, (1998).

[7] F.J. Pineda, ‘Generelization of back-propagation to recurrent neural
networks’, Physical Review Letters, 59, 2229–2232, (1987).

[8] D. Zisper R.J. Williams, ‘A learning algorithm for continually run-
ning fully recurrent neural networks’, Neural Computation, 1, 270–280,
(1989).

[9] X. Wang, ‘Period-doublings to chaos in a simple network: An analytical
proof’, Complex Systems, 5, 425–441, (1991).

[10] X. Wang, ‘Dynamics and bifurcation of neural networks’, in Handbook

of Neural Networks, (1995).
[11] T.G. Kincaid Y. Fang, ‘Stability analysis of dynamical neural net-

works’, in IEEE Transactions of Neural Networks, Volume 7, pp. 996–
106, (1996).

4th International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2011)
Berlin, Germany, December 9 2011

4

Hierarchical Exhaustive Construction of Autonomously
Learning Networks

Goren Gordon 1

Abstract. Autonomous learning is the ability to learn without exter-

nal teachers. What can an agent learn autonomously? To answer this

question we propose a hierarchical exhaustive combinatorial con-

structive algorithm. It generates subnetworks that attempt to learn

all possible correlations between subsets of available raw data from

the agent’s sensors and motors. Using the concept of pruning, sub-

networks that are presented with uncorrelated data sets are removed,

resulting in a small pool of viable subnetworks. These augment the

raw information dataset in higher levels, in which the exhaustive con-

struction and pruning are repeated. The end result of the hierarchi-

cal process is a pool of viable and reliable subnetworks that repre-

sent all the correlations the agent can autonomously learn. One can

then construct full networks by wiring learned subnetworks in or-

der to perform specific tasks. The algorithm is implemented on a

robot with a moving camera and an arm, highlighting novel con-

cepts regarding active sensing and autonomous learning. We show

that the robot’s autonomously learned viable and reliable subnet-

works are its sensory-motor internal models, motion detection, vi-

sual self-recognition and camera to arm coordinate transformation.

The robot’s only non-trivial closed-loop execution network is shown

to perform reaching movements towards a moving object and is ro-

bust to noise and changes in the robot’s sensors and motors due to its

concurrent execution and re-learning capabilities.

1 Introduction

One of the brain’s greatest virtues is its ability to learn. However, one

can distinguish between two learning categories, namely, external-

or teacher-mediated learning and autonomous learning, i.e. learning

from internally accessible information. While naming of objects and

colors is externally taught, e.g. one must be told that the word “yel-

low” is associated to a specific color perception, controlling your own

body movements is autonomously learned [20, 5]. However, learning

reaching movements are not so easy to classify [30, 2].

In this contribution we address the question: what can be au-

tonomously learned, without external teachers? We wish to model

our view of the brain’s solution to this question. For this reason

we construct a hierarchical neural network that attempts to au-

tonomously learn all correlations between available data, given an

agent’s sensors, motors and performed actions. By all, we mean an

exhaustive combinatorial construction of subnetworks, representing

all possible subsets of available data, wherein each subnetwork at-

tempts to learn a specific data subset’s correlation. Many such sub-

sets hold no correlations and are thus unlearnable; by employing the

1 Department of Neurobiology, Weizmann Institute of Science, Israel, email:
goren@gorengordon.com

concept of pruning [26, 8], the associated subnetworks become non-

viable, i.e. networks with no contributing neurons. The phenomenon

in which an over-sized neuronal network is first initialized, followed

by elimination of non-active elements is prevalent in the brain and is

called exuberance [13].

Hierarchy is achieved by augmenting a higher level’s available

data by lower levels’ viable networks. Thus, a new level exhaus-

tively constructs subnetworks that attempt to learn correlations be-

tween outputs of lower levels’ networks and raw sensory-motor data.

Exuberance and pruning follows in order to distill the viable and reli-

able subnetworks of this level in the hierarchy. The process continues

for higher hierarchical levels.

The end result of the hierarchical construction is a pool of subnet-

works that represents all the correlations the agent can autonomously

learn. This pool can then be wired in such a way so as to perform

specific tasks. Since the agent cannot learn any other correlation, the

combination of all possible wiring of the subnetwork pool represents

the entire repertoire of tasks the agent can perform. Furthermore,

since all the elements are autonomously learned, concurrent execu-

tion and learning can be performed, overcoming calibration and de-

terioration errors on-line.

We demonstrate the process on a real robot, with a 1 degree-of-

freedom arm and a camera mounted on a single motor, representing

the eye. We show that the viable subnetworks of the first level of the

hierarchy represent only the internal models (IM) [14, 21, 29] of the

sensory-motor coupling, among which visual motion-detection is a

notable example. The second level uses the first level’s subnetworks

to learn more complex correlations, such as visual self-recognition

[20, 5, 17]. The third and final level encompasses the entire visual

field and autonomously learns visual-arm coordinate transformation

[22]. The viable and reliable subnetworks are then wired to achieve

the only functional closed-loop circuit, given the learning schedule,

i.e. the only circuit that performs non-trivial action. The circuit per-

forms a reaching task, with concurrent autonomous learning of the

composing elements.

The novel features of this paper are: (i) a comprehensive brain-

inspired framework of hierarchical autonomous learning of sensory-

motor correlations; (ii) connection between autonomous and active

sensing paradigms; (iii) a single learning algorithm that generates

motion detection, self-recognition and hand-eye coordinate transfor-

mation; (iii) demonstration of a fully autonomous learning reaching

robot.

The paper is organized as follows. We begin with a brief descrip-

tion of the model architecture and framework in Sec. 2. We then

present in Sec. 3 the mathematical notations of the agent, data sets

and subnetworks, followed by a description of the learning and prun-

ing processes. Section 4 details the hierarchical exhaustive combina-

4th International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2011)
Berlin, Germany, December 9 2011

5

torial construction of all the subnetworks, followed by an analysis of

the growing complexity of the network and possible execution tasks.

Both sections are accompanied by a running example (Fig. 4), whose

details are given in Sec. 5. Related works are decsribed in Sec.6 and

the discussion in Sec. 7 concludes the paper.

2 Model Architecture and Framework

The main concept behind the proposed architecture, Fig. 1, is au-

tonomous learning of sensory-motor correlations. The implemented

algorithm is internally supervised learning, i.e. supervised learning

where a “labeled” training set is provided by the agent itself. This is

not a form of unsupervised learning [34, 25], but rather learning to

predict correlations between subsets of available information. This

information is the time-series of raw data from the sensors and mo-

tors of the agent, Fig. 1(a).

1

2

3

Camera

Motor

Command

Motor

Angle

Construction Pruning

3

X

X

(a) Level 1

1

2

3
Camera

Motor

Command

Motor

Angle

Construction Pruning

3

X

X

3

4

5

6

7

8

9

Level1

X

X

5

X

X

X

(b) Level 2

 !1
D

 !1
L

 !1
V

 !2
V !2

D
 !2
L

Figure 1. Model architecture, where each subnetwork (numbered circle)
autonomously learns the correlation between two inputs (black arrows) and

one output (gray arrows). (a) Level 1 construction of all subnetworks L(1),

given camera sensor and a motor information D(1); followed by pruning

that leaves only one subnetwork viable, V (1). (b) Level 2 construction of all

subnetworks L(2) that include level 1 viable network; pruning leaves only

subnetworks 3 and 5 viable, V (2).

The architecture construction is exhaustive in the sense that corre-

lations between all subsets of available information are learned. We

are interested in a brain-like architecture and thus employ a prevalent

phenomenon in the brain called exuberance [13], which describes a

rapid growth of connectivity between many neurons on many lev-

els, followed by deterioration of unused or non-correlated connec-

tions. In our implementation, each subnetwork is an artificial neural

network, initialized with many hidden neurons, followed by prun-

ing [26, 8] of neurons whose decaying weights are smaller than a

given threshold. If no correlations are present, the pruning process

will result in a non-viable subnetwork, i.e. a network with no con-

tributing neurons, thus exemplifying the network’s inability to learn

the subset’s correlation. In some situations, usually for large-input

subnetworks, pruning still results in a viable subnetwork, but it is un-

reliable, i.e. its prediction error even on the training set is high, thus

exhibiting another form of inability to learn.

Following the brain’s hierarchical structure, our proposed archi-

tecture is hierarchical in the sense that higher level subnetworks learn

correlations between lower levels’ subnetwork outputs and the raw

sensory-motor information. This is reminiscent of cascade correla-

tion networks [7, 16, 31] in which each new hidden layer neuron is

connected to the input layer and lower-level hidden neurons. How-

ever, in our construction, each correlation learned is a whole (learned

and viable) subnetwork that augments the input-space and allows

learning of new correlations.

More specifically, in the algorithm’s first level of the hierarchy,

only raw unprocessed data from the sensors and motors are used in

the aforementioned process, which ends with a small number of vi-

able subnetworks, Fig. 1(a). In the next level of the hierarchy, the

previous level’s learned and viable subnetworks are combined with

the sensory-motor data, Fig. 1(b). Another exhaustive combinatorial

construction of new subnetworks is performed, where now each sub-

set must include at least one learned subnetwork from the previous

hierarchical level. Exuberance and pruning follows in order to distill

the viable and reliable subnetworks. The process continues for higher

hierarchical levels.

While hierarchical construction of unsupervised learning networks

have been used on pure sensory data, e.g. images [12, 25], our con-

struction focuses on internally supervised learning of correlations be-

tween sensory flow and motor actions. Hence, active sensing [4, 28],

in which sensors are moved and controlled by the agent, is paramount

to the understanding of the learned correlations. These represent

what the agent can learn and predict about its own body and how

it senses the environment in an active fashion. Thus, the agent can

learn to predict an actuator’s influence on its mounted sensor’s in-

formation flow, as well as learn to determine the appropriate motor

command that will generate a specific sensory input. These are the

active sensing counterparts of the forward and inverse models, re-

spectively [14, 21, 29].

3 Agent and Subnetwork Notations

This section introduces the basic elements of the proposed model,

namely, the agent, its sensory-motor data and the subnetworks. The

subnetworks’ learning and pruning processes are then described. The

section is accompanied by a running example of the implementation

of the process on a real robot (Fig. 2), to better elucidate the finer

details of the model.

3.1 Agent and Sensory-Motor Data

The agent is composed of NM motors and NS sensors. The former

executes motor commands mi
t, i = 1, . . . , NM and the latter re-

ceives sensory input sj
t , j = 1, . . . , NS . The dataset time-series is

composed of copies of the motor commands, known as efference

copies [18, 3], and sensory input, with possible delays: D
(1)
t =

{mi

τi
m

, sj

τ
j
s

|τ i
m = t, t − 1, . . . , t − di

m; τ j
s = t, t − 1, . . . , t − dj

s},

where di
m is the maximal delay of the ith motor command and dj

s

is the maximal delay of the jth sensory input. The (1) superscript

denotes the first level of the hierarchy, which has ||D
(1)
t || data ele-

ments.

Example. The example agent is a LEGO Mindstorm robot

(Fig. 2(a)) with NM = 2 motors; the first controls an arm and the

second the camera. It has NS = 3 sensors, where the first two are

4th International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2011)
Berlin, Germany, December 9 2011

6

(a) (b)

(c) (d)

Figure 2. (a,b) Two consecutive images as captured by camera, ct, ct−1.
O marks the center of the arm, X marks the center of the moving object. The
line shows the distance between the two. (c) Output of motion detection

subnetwork, V
(1)
7 . (d) Output of visual self-recognition subnetwork, V

(2)
1

(see text for details).

proprioception sensors of the motors, p1,2
t := s1,2

t , i.e. report the

motor angle, and the third is the camera, ct := s3
t . The camera is

composed of 80 × 60 pixels, and we shall consider an increasing re-

ceptive field with increasing hierarchical levels, ranging from a sin-

gle pixel in the first level, through patches of 7x7 pixels in the second

level, up to the whole image in the third level of the hierarchy (see

below). We consider no motor delays, d1,2
m = 0 and a single time de-

lay for the sensors, d1,2,3
s = 1. Thus the data set at each time step is

D
(1)
t = {m1

t , m
2
t , p

1
t , p

1
t−1, p

2
t , p

2
t−1, ct, ct−1}, with ||D

(1)
t || = 8.

3.2 Subnetworks, Learning and Pruning

Subnetworks. A subnetwork is a function approximator that at-

tempts to learn the correlation between elements of the data set. It

is denoted by Lijk = p(Di|Dj , Dk), ∀i, j, k ∈ D, i 6= j 6= k 6= i,
where the subscript i, j, k are indexes of the data-set elements (differ-

ent from the subscript t, which indicates the current time step of the

whole data set). We have restricted the subnetworks to a 2 7→ 1 net-

works, i.e. only mapping of two dataset elements to another, where

extensions to more elaborate mappings is straightforward. Hence,

there are ||L|| = ||D|| × (||D|| − 1) × (||D|| − 2)/2 possible sub-

networks. The implementation of the subnetworks is via an artificial

neural network (ANN), with input neurons that receive the data ele-

ments Dj , Dk, several hidden layers and output neurons that encode

Di.

Each subnetwork was taken to be multi-layered in order to allow

learning of complex sensory-motor correlations. A-priori the correla-

tion is not known, and hence initially a complex network is required

for all subnetworks to allow generality. Furthermore, in this imple-

mentation there is a unique approximated output for every input ele-

ment, i.e. the function approximation is deterministic, eliminating the

need for probability normalization. It is also imperative, for proper

comparison, that the ANN structure and parameters be the same for

all subnetworks. Thus, all dataset elements were normalized to be

D ∈ [−1, 1] and saturated-linear transfer functions were used in the

output neurons.

Learning. Motion of the agent’s motors produces the dataset time-

series, which is treated as the subnetworks’ training set. Autonomous

internally supervised on-line learning proceeds with the presentation

of this dataset time-series to all the subnetworks, in parallel. We have

implemented a back-propagation learning algorithm, with learning

rate β and momentum α.
Pruning. Concurrent with the learning algorithm, we have im-

plemented a pruning algorithm [26, 8] via weight decay. An ad-

ditional penalty term was introduced to the ANN weights’ update

rule in the form of −γsign(wij), where 0 < γ < 1 is the pruning

rate and wij is the respective weight. Hence, the full update rule is

given by ∆wij = βǫf ′(x) + αwij − γsign(wij), where ǫ is the

(backpropagated-) error and f(x) is the neuron’s transfer function.

For each level we have chosen γ to be proportional to the overall

learning time of all networks, i.e. while learning and pruning were

concurrent, as expressed in the update rule, effectively pruning man-

ifested after learning (were possible) was stabilized.

At each time step, the sum of the absolute weights for each neuron

in the hidden layers (both input and output weights) was compared

to a given threshold, hthreshold; if the sum was below the thresh-

old, that neuron was pruned. If the last neuron of a hidden layer

was pruned, the subnetwork was deemed non-viable. Furthermore,

for subnetworks with only two input neurons (see below), the sums

of the absolute weights of the input neurons were calculated. If one

sum was more than imul times greater than the other, the subnetwork

was termed non-viable, since it depends only on a single input, and

not both. We denote the viable subnetworks by V ⊆ L.

Example. Since the robot’s raw dataset has ||D
(1)
t || = 8 ele-

ments, there are a total of ||L(1)|| = 168 possible subnetworks.

One example of a viable subnetwork is the first motor’s forward

model [29] L = p(p1
t |p

1
t−1, m

1
t), i.e. the prediction of the next mo-

tor angle, given the previous angle and the given motor command.

L = p(p1
t |p

2
t−1, ct), on the other hand, is non-viable since there is

no correlation between the first motor’s angle, the previous other mo-

tor’s angle and the current image pixels.

4 Hierarchical Construction

Using the general notations described above, we proceed to the ex-

haustive combinatorial construction of the subnetworks in an hier-

archical fashion. We first describe the augmentation of the dataset

by previous level’s viable networks and then produce the current

level’s subnetwork pool. A complexity analysis follows, showing the

double-exponential increase in network complexity, had exuberance

and pruning were not implemented. The exact increase in complex-

ity cannot be a-priori computed since it depends on the agent and

its environment, but a drastic decrease in complexity results if one

assumes proportional pruning. The viable and reliable subnetworks

allow the wiring of specific circuits that can perform specific tasks.

This is discussed at the end of the section.

4.1 Dataset Augmentation and Subnetwork Pool

The first hierarchical level dataset is composed strictly of raw

sensory-motor data, D(1). Using these time-series as a training set,

a pool of subnetworks is composed L
(1)
ijk = p(D

(1)
i |D

(1)
j , D

(1)
k),

∀i, j, k ∈ D(1), i 6= j 6= k 6= i. However, not all subnetworks are
viable and following the process of concurrent learning and pruning,

a subset of viable subnetworks is produced V (1) ⊆ L(1).

The second hierarchical level now has access to the first level’s

viable subnetworks processed information, i.e. presented with the

raw sensory-motor dataset, the viable networks produce predictions

based on their learned correlations. Hence, the augmented second

level dataset is D(2) = D(1) ∪ V (1). One can then proceed to ex-

haustively construct subnetworks that will attempt to learn all possi-

ble 2 7→ 1 correlations of the augmented dataset. However, only sub-

4th International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2011)
Berlin, Germany, December 9 2011

7

networks that include at least one of the previous level’s viable net-

works will be constructed. The rest were already learned in the previ-

ous level. The second level’s subnetwork pool is denoted by L
(2)
ijk =

p(D
(2)
i |D

(2)
j , D

(2)
k), ∀i, j, k ∈ D(2), i 6= j 6= k 6= i such that

∃D
(2)
i,j,k ∈ V (1). The total number of such subnetworks is then given

by ||L(2)|| = ||D(2)||× (||D(2)||− 1)× (||D(2)||− 2)/2−||L(1)||.
Concurrent learning and pruning then follows to produce V (2) viable

networks.

This can be easily generalized to higher levels, as follows:

D(n) = D(n−1) ∪ V (n−1)
(1)

L
(n)
ijk = p(D

(n)
i |D

(n)
j , D

(n)
k),

∀i, j, k ∈ D(n), i 6= j 6= k 6= i s.t.∃D
(n)
i,j,k ∈ V (n−1)

(2)

||L(n)|| = ||D(n)|| × (||D(n)|| − 1) ×

(||D(n)|| − 2)/2 −

n−1∑

m=1

||L(m)|| (3)

Example. The robot’s first level of the hierarchy produces

||L(1)|| = 168 subnetworks. However, only internal models (IM)

of the sensory-motor dataset have correlations (see below, Fig. 3).

These are presented to three subnetworks that relate p1
t , p

1
t−1, m

1
t

(IM of the arm); three subnetworks that relate p2
t , p

2
t−1, m

2
t (IM of

the eye-motor) and; three subnetworks that relate ct, ct−1, m
2
t (IM of

the eye-motor and camera). Hence, ||V (1)|| = 9 and ||D(2)|| = 17,
resulting in ||L(2)|| = 1872.

4.2 Complexity Analysis

One can consider the increase in the number of subnetworks as the

hierarchical levels grow. Assume that pruning is not implemented;

this results in changing Eq. (1) to D(n) = D(n−1) ∪ L(n−1). Thus,

denoting xn := ||D(n)|| and yn := ||L(n)||, we get the following

recursion relations:

xn = xn−1 + yn−1 (4)

yn = xn(xn − 1)(xn − 2)/2 − yn−1 y0 = 0 (5)

This results in double exponential dependency on the hierarchy level:

yn ∼ O(x3n

1).
However, one can counter this increase by the use of exuberance

and pruning. Consider that only a very small subset of the subnet-

work pool remains viable, such that ||V (n)|| = κ||D(n)||, κ > 1.
This results in a drastic decrease in subnetwork pool complexity, to

a single exponential dependence: yn ∼ O(κ3(n−1)).
Furthermore, as seen in the example below, there is a possibility

that several of the viable networks are equivalent, i.e. they convey the

same information and are thus redundant. This may result in a linear

increase in the number of informative viable networks as hierarchical

level increases. This is indeed the case in the robot example analyzed

below.

4.3 Execution of a Task

Once the hierarchical levels’ viable subnetworks were learned, one

can construct a full network to perform specific tasks. This can be

done by connecting one subnetwork’s output to another’s input. No-

tice that during execution the inputs to the subnetworks may differ

from those during the learning phase. However, they must accom-

modate the inputs’ dimensionality and content.

In order for a task to be operational, the last subnetwork must have

a motor output. This drastically restricts the number of subnetworks

that may reside in the end of the task network. However, the number

of possible wirings cannot be a-priori computed, since the number

and characteristics of the viable networks are not known.

Example. One of the first level’s viable subnetwork is the arm’s

inverse model, V (1) = p(m1
t |p

1
t , p

1
t−1). During autonomous learn-

ing, it was presented with the known time-series, where p1
t−1 was

the delayed proprioception input. However, during execution it can

serve as a mechanism to achieve a specific angle position, p1
goal:

V (1) = p(m1
t+1|p

1
goal, p

1
t), i.e. it determines the next motor com-

mand m1
t+1 via the goal position and the current position. Hence, it

may reside at the end of a functional network.

5 Robot Implementation

We have implemented the proposed model on a LEGO Mindstorm

robot (Fig. 1(a), Supp. Movie), with a 1 degree-of-freedom (DOF)

arm, m1
t , and a single motor m2

t that controls the pan of a USB

camera, ct. As described above, the raw data set at each time step

is D
(1)
t = {m1

t , m
2
t , p

1
t , p

1
t−1, p

2
t , p

2
t−1, ct, ct−1}, where p1,2

t is the

proprioception information relating the motor angle. First, the hier-

archical construction of the viable subnetwork pool is presented. It

is followed by a presentation of a possible wiring of the learned sub-

networks to accomplish a reaching task.

5.1 Construction of Viable Subnetwork Pools

5.1.1 First level

The first level data set, D(1), was used to construct an exhaustive set

of all ||L(1)|| = 168 possible subnetworks. All the subnetworks had

two hidden layers with four neurons each, and β = α = 0.1, γ =
0.0001. The robot moved its arm motor randomly, and its camera

motor in a succession of random motion and then no motion. This

was repeated for 100,000 time steps, in which concurrent learning

and pruning was performed on all subnetworks in parallel, Fig. 3.

p
t

1

p
t−

1

1

V
(1)

1
(m

t

1
 | p

t

1
, p

t−1

1
)

−1 −0.5 0 0.5 1
−1

0

1

p
t−1

1

m
t1

V
(1)

2
(p

t

1
 | p

t−1

1
, m

t

1
)

−1 −0.5 0 0.5 1
−1

0

1

p
t

1

m
t1

V
(1)

3
(p

t−1

1
 | p

t

1
, m

t

1
)

−1 −0.5 0 0.5 1
−1

0

1

p
t

2

p
t−

1

2

V
(1)

4
(m

t

2
 | p

t

2
, p

t−1

2
)

−1 −0.5 0 0.5 1
−1

0

1

p
t−1

2

m
t2

V
(1)

5
(p

t

2
 | p

t−1

2
, m

t

2
)

−1 −0.5 0 0.5 1
−1

0

1

p
t

2

m
t2

V
(1)

6
(p

t−1

2
 | p

t

2
, m

t

2
)

−1 −0.5 0 0.5 1
−1

0

1

c
t

c
t−

1

V
(1)

7
(m

t

2
 | c

t
, c

t−1
)

−1 −0.5 0 0.5 1
−1

0

1

m
t

2

c
t−

1

V
(1)

8
(c

t
 | m

t

2
, c

t−1
)

−1 −0.5 0 0.5 1
−1

0

1

m
t

2

c
t

V
(1)

9
(c

t−1
 | m

t

2
, c

t
)

−1 −0.5 0 0.5 1
−1

0

1

p
t

2

c
t

V
(1)

10
(c

t−1
 | p

t

2
, c

t
)

−1 −0.5 0 0.5 1
−1

0

1

p
t−1

2

c
t

V
(1)

11
(c

t−1
 | p

t−1

2
, c

t
)

−1 −0.5 0 0.5 1
−1

0

1

m
t

2

c
t

V
(1)

12
(p

t−1

2
 | m

t

2
, c

t
)

−1 −0.5 0 0.5 1
−1

0

1

Figure 3. Mapping of viable subnetworks of the first level. In order to
visualize the image-space, here ct is taken to be the normazlized gray-scale

value of the RGB pixel in V
(1)
7−12.

The first level of the hierarchy represents the lowest level in the vi-

sual pathway, e.g. retina. Hence, ct in this level was set to be a single

RGB pixel. During the learning process, a subnetwork that had either

4th International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2011)
Berlin, Germany, December 9 2011

8

ct or ct−1 was presented with all the image pixels in a randomized

permutation order, thus having a training set 4800-times larger than

other networks. Furthermore, it means that the input/output layers

of such networks had more neurons: networks that had one or two

camera inputs had four or six input neurons, respectively; networks

that had a camera output had three output neurons (RGB). We thus

normalized the learning and pruning rate, β, γ, by scaling them by

1/4800. We further factorized pruning by scaling the pruning rate, γ
by one over the number of input neurons.

Moreover we introduced a minor modification to expedite learn-

ing: Motor commands were continuous in their regime, m1,2
t ∈

[−1, 1]. However, learning visuo-motor correlation is more related

to the existence of motion, rather than its direction. Learning to

distinguish between |m1,2
t | using m1,2

t is very difficult and time-

consuming for a small ANN, since it is non-monotonic. Hence,

for all subnetworks in the first level that contained at least one vi-

sual input and at least one motor command, the latter was taken

to be its absolute value. For example, L(1) = p(m2
t |ct, ct−1) ⇒

p(|m2
t ||ct, ct−1).

Viable subnetworks. The viable networks in the end of this pro-

cess were (Fig. 3): V
(1)
1 = p(m1

t |p
1
t , p

1
t−1), V

(1)
2 = p(p1

t |m
1
t , p

1
t−1)

and V
(1)
3 = p(p1

t−1|p
1
t , m

1
t) representing the inverse, forward and

postdiction internal models of the arm motor, respectively [29];

V
(1)
4 = p(m2

t |p
2
t , p

2
t−1), V

(1)
5 = p(p2

t |m
2
t , p

2
t−1) and V

(1)
6 =

p(p2
t−1|p

2
t , m

2
t) representing the inverse, forward and postdiction IM

of the camera motor, respectively, and; V
(1)
7 = p(m2

t |ct, ct−1),

V
(1)
8 = p(ct|m

2
t , ct−1) and V

(1)
9 = p(ct−1|ct, m

2
t) represent-

ing the inverse, forward and postdiction IM of the camera mo-

tor and camera image, respectively. Three more networks were vi-

able, but their corresponding prediction maps hold no information:

V
(1)
10 = p(ct−1|p

2
t , ct),V

(1)
11 = p(ct|p

2
t−1, ct−1) and V

(1)
12 =

p(p2
t−1|m

2
t , ct). We believe that further learning would have resulted

in their pruning.

The first six viable networks have been described intensively in

the literature [14, 21, 29]. For a 1 DOF constellation they are very

simple, whereas for more DOF there are known problems, mainly in

the inverse models [14, 21]. However, this is not the main topic of

the paper and thus we do not elaborate on it.

Of special interest is V
(1)
7 = p(m2

t |ct, ct−1) (Fig. 2(c)); it re-

ceives the current image, the previous image and learns whether the

camera motor has moved. In a non-homogeneous visual environ-

ment, when the camera moves, most of the pixels’ colors change;

when the camera does not move, most of the pixels’ colors do not

change. Hence, this subnetwork represents an autonomously learned

visual change detector.

Figure 3 shows the learned mapping of the viable subnetworks

of the first level. As can be seen, the motor’s internal models are

(almost) linear mapping. V
(1)
7 is the visual change detection: as de-

scribed above, the output was rescaled to be 1 for motion and -1 for

no motion. This shows that if two pixels are identical, the output is

-1, whereas if they are different, the output is 1, constituting a true

change detector. Notice that V
(1)
8,9 are similar and represent the visual

prediction: if there is no motion (left side), the output pixel is iden-

tical to the input pixel; if there is motion (right side), nothing can be

said of the output pixel. Finally, the maps of V
(1)
10−12 are almost flat,

representing no information or correlation.

Novel features. The nine viable networks of the first level hint to-

wards a more general concept of autonomous learning: active sens-

ing circuits [4, 28], whereby motor commands influence sensory in-

formation, enables autonomous learning of internal models of the

sensory-motor coupling. Thus, while one interpretation of V
(1)
7 is

visual change detection, it is learned similarly to V
(1)
1,4 which are

“proper” inverse models [14, 21]. Hence, it can be used as a visual in-

verse model, or active vision [1, 23, 19]: given the current image and

a goal image, what is the proper motor command? Conversely, V
(1)
1,4

can be used as joint-angle change detectors: given the current and

previous angles, was the joint moved? The exhaustive construction

of all subnetworks brought these novel concepts to light: (i) There

is one-to-one mapping between inverse models and change detectors

and; (ii) only active sensing coupling enables autonomous learning

of internal models and change detectors.

5.1.2 Second level

Eqs. (1-3) result in ||D(2)|| = 17 and ||L(2)|| = 1872. This was
computationally too expensive for the setup we have considered, so

made the following restrictions: (i) only the arm motor was con-

sidered, m1
t , p

1
t ; (ii) no sensory or motor delays were considered,

d1,2
m = d1,2,3

s = 0; (iii) only the arm motor internal models and

the visual change detection were taken, V
(1)
1−3,7 and; (iv) only subnet-

works that had at least one visual component were considered. This

resulted in a total of ||L(2)|| = 72 subnetworks. While this is consid-

erably less than the exhaustive pool, it is still large enough to demon-

strate all the proposed concepts. All the subnetworks had two hidden

layers with ten neurons each, and β = 5, α = 0.1, γ = 0.001. The
robot moved its arm motor randomly for 10,000 time steps, in which

concurrent learning and pruning was performed on all subnetworks

in parallel.

The second level of the hierarchy represents a higher level in the

visual pathway, one in which features are detected [15]. Hence, ct in

this level was set to be a 7x7 RGB pixel array. As with the previous

level, each time step all 7x7 arrays composing the image were pre-

sented to the subnetworks in a randomized permutation order. Sim-

ilarly, the number of the input/output layers’ neurons were enlarged

and the learning and pruning rates were rescaled. Since all the sub-

networks had at least one image component, the rescaled learning

rate β was always much smaller than 1.

Viable subnetworks. Only five subnetworks were viable at the

end of the process (Fig. 4), namely V
(2)
1−5 = p(V

(1)
7 |ct, K), where

K = {m1
t , p

1
t , V

(1)
1,2,3}. Three more subnetworks “survived” the

learning and pruning process, but held no information: V
(2)
6 =

p(p1
t |m

1
t , V

(1)
7), V

(2)
7 = p(p1

t |ct, V
(1)
1) and V

(2)
7 = p(p1

t |ct, V
(1)
3).

Examining V
(2)
1−5 reveals that in the implemented learning schedule,

i.e. only a moving arm, they are all similar; they learn the trans-

formation from image patches, ct, to moving objects in the visual

field V
(1)
7 . Since the only moving object in the training set was the

arm itself, they all represent autonomous learning of visual self-

recognition, Fig. 2(d).

Figure 4 shows the execution output of the 8 viable subnetworks of

level two. As can be seen, V
(2)
1−5 are practically identical. While V

(2)
6

seems to hold some information, the distinction between the arm and

background is extremely small.

Novel features. Other works have shown autonomous learning of

visual self-recognition [20, 17, 5], yet none have done so in a hi-

erarchical manner starting from raw sensory data. Rather, all have

used intensive pre-programmed image processing prior to learning.

Furthermore, while we have not used the fully exhaustive second-

level subnetwork pool, due to computational hardware limitations,

this mapping emerged as the only viable and functional mapping out

of 72 others.

4th International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2011)
Berlin, Germany, December 9 2011

9

(a) (b): V
(2)

1
(c): V

(2)

2

(d): V
(2)

3
(e): V

(2)

4
(f): V

(2)

5

(g): V
(2)

6
(h): V

(2)

7
(i): V

(2)

8

Figure 4. Execution map of the viable level 2 subnetworks.

5.1.3 Third level

Since we have shown the equivalence of the five viable second-

level subnetworks, we can augment the data set with only one, e.g.

V
(2)
1 . This still results in a large exhaustive pool of subnetworks,

so we made the same restrictions as in the second level. Further-

more, we have introduced a modification to the execution of sec-

ond level viable subnetworks whose output was a single-channel

image. This is usually due to detection of visual objects and hence

its magnitude is not important, only its sign. We therefore changed:

output ∈ [−1, 1] ⇒ output ∈ {−1, 1}, by thresholding at 0.
This only expedited the learning of the higher levels, and does not

change the results of the paper. For example, the execution output

V
(2)
5 = p(V

(1)
7 |ct, p

1
t) was set to be the sign of the output neuron.

These alterations result in ||L(3)|| = 63 subnetworks, Fig. 5 (see

Appendix). Again, this is a rather small pool, but can still demon-

strate the basic principles presented here. All the subnetworks had

two hidden layers with ten neurons each, with parameters β =
0.01, α = 0.1. The robot moved its arm motor randomly for 100,000

time steps, in which only learning was performed on all subnetworks

in parallel. Since this is the last level of the hierarchy and the subnet-

works had numerous input neurons (see below), pruning proved to

be an inefficient mechanism for distilling viable networks. Hence we

employ a prediction error threshold, ethreshold = 0.1; subnetworks
whose average prediction error did not decline below it at the end of

the learning stage were deemed unreliable, Fig. 5.

The third and last level of the hierarchy represents the highest level

in the visual pathway, one that considers the entire field of view [6].

Hence, ct in this level was set to be the entire image and in contrary

to the previous two levels, a single presentation was done in each

time step. Furthermore, rescaling of β was not required.

Viable subnetworks. Twenty subnetworks ended up reliable,

V
(3)
1−20 (see Appendix). However, they have several things in com-

mon: V
(2)
1 is always an input (and not an output), and the output con-

sists of arm parameters (not image, or change detection). From this

and further analysis, one can interpret the learned correlation: it is the

transformation between the visual location of the hand, via V
(2)
1 , and

the current arm position. Hence, this constitutes autonomous learn-

ing of visual-to-arm coordinate transformation.

Novel features. Previous works have described algorithms for co-

ordinate transformations [22]. However, they employed intense im-

10
−2

10
−1

10
0

10
1

P
re

d
ic

ti
o

n
 e

rr
o

r

(a)

1

2

3

4

5

6

7

10
−2

10
−1

10
0

10
1

P
re

d
ic

ti
o

n
 e

rr
o

r

(d)

22

23

24

25

26

27

28

10
0

10
1

10
2

10
−2

10
−1

10
0

10
1

 t × 10
3

P
re

d
ic

ti
o

n
 e

rr
o

r

(g)

43

44

45

46

47

48

49

(b)

8

9

10

11

12

13

14

(e)

29

30

31

32

33

34

35

10
0

10
1

10
2

 t × 10
3

(h)

50

51

52

53

54

55

56

(c)

15

16

17

18

19

20

21

(f)

36

37

38

39

40

41

42

10
0

10
1

10
2

 t × 10
3

(i)

57

58

59

60

61

62

63

Figure 5. Prediction error of all 63 subnetworks of level 3 (see Appendix).
Reliable networks are emphasized. Dashed black line delineate reliability

threshold.

age processing prior to learning. Furthermore, this is the first time,

to the best of our knowledge, that the same algorithm produces mo-

tion detection, visual self-recognition and visual-to-arm coordinate

transformation.

5.2 Reaching Network

We next wish to construct a closed loop wiring between learned sub-

networks that begins with sensory information and ends up in a motor

command. By closed loop we mean that there is no external goal or

task, but that the motion of the motors are determined by the wiring

itself. Hierarchical construction followed by pruning resulted in the

following viable and reliable subnetworks: nine networks from the

first level, five equivalent subnetworks from the second level and

twenty equivalent subnetworks from the third and last level.

We focus on the motion of the arm only, hence the subnetwork

at the end of the closed loop must have an output of an arm motor-

related parameter, Fig. 6. The arm’s inverse model, V
(1)
1 is the natural

subnetwork that obeys this requirement. However, some of the third

level subnetworks, V
(3)
13−18 (see Appendix), have the inverse model

as their output and thus also obey that requirement.

The image-arm coordinate transformation subnetworks, V
(3)
1−12

(see Appendix) are the only non-trivial subnetworks that can serve

as an input to the arm’s inverse model. This is so because these sub-

networks have either p1
t or V

(1)
2 , which is the forward model of the

arm, as their output. This equivalent class transforms visual self-

recognition, V
(2)
1 to the arm’s angle, regardless of the other input,

e.g. m1
t , ct. Hence, these are actually a 1 7→ 1 subnetworks. How-

ever, since they are third-level subnetworks, they have an input of the

whole image, resulting in 4800 input neurons.

We focus on the arm inverse model. During execution, the inverse

model receives the current position of the arm and should receive a

goal position. However, since we are interested in a closed loop, the

goal should come from another subnetwork. The viable candidate

subnetworks are V
(1)
2,3 and V

(3)
1−12, where the former group closes a

trivial loop of forward/inverse models of the same motor. The latter

group are equivalent and transform a visual image to an arm coor-

dinate, so for simplicity we choose V
(3)
1 = p(p1

t |V
(2)
1 , m1

t). The

wiring of V
(3)
1 → V

(1)
1 results in motion towards a visual object. Fi-

nally, V
(3)
1 receives a single channel full image as its input. Six viable

4th International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2011)
Berlin, Germany, December 9 2011

10

Visual

sensor

Arm

proprio!

ception

Visual change

detection

Coordinates

transformation

Inverse model

Arm actuators

 !1
1
V

 !3
1
V

 !1
7
V

t
c

1t
c

1

t
p

Figure 6. Reaching close-loop network, connecting viable subnetworks

V
(1)
7 → V

(3)
1 → V

(1)
1 .

subnetworks produce this output, namely, V
(2)
1−5 and V

(1)
7 . The for-

mer five are equivalent, representing the arm’s visual self-recognition

(Fig. 2(d)) and result in trivial motion of the arm towards itself.

The latter’s motion detection capabilities (Fig. 2(c)) close the loop:

(ct, ct−1) → V
(1)
7 → V

(3)
1 → V

(1)
1 . In words, two consecutive

images produce a change map; coordinate transformation transfers

the location of detected changes into the arm’s position; the arm’s

inverse model produces the correct arm motor command to reach

towards the moving object, Fig. 6.

As mentioned above, V
(3)
13−18 can also be the final subnetworks of

the closed loop (see Appendix). Analyzing their input/output rela-

tions show that they are equivalent and can serve as a combination

of visual-to-arm coordinate transformation and inverse model. This

means that one can replace the wiring V
(1)
7 → V

(3)
1−12 → V

(1)
1 de-

scribed above with V
(1)
7 → V

(3)
13−18. We have not done so in the

robot implementation in order to show that several subnetworks can

be executed and concurrently re-learned.

We wish to emphasize that the presented execution circuit is the

only functional non-trivial closed loop composed of viable and re-

liable subnetworks that operate the arm. The other possible wirings

that result in motion of the arm perform trivial motions, such as mov-

ing towards the current position of the arm, i.e. not moving. While

we have introduced learning schedule restrictions in the second and

third levels, the process has still demonstrated extreme convergence:

from a total of 168+72+63 = 303 initial subnetworks, exuberance,

pruning and reliability reduced the pool to a mere 9+5+20 = 34 vi-

able and reliable subnetworks, which can produce a single emergent

functional closed loop, namely, reaching a moving target.

5.3 Concurrent Execution and Learning

Since all the components of the reaching network can be au-

tonomously learned, the network possesses a unique characteristic:

it can continuously and autonomously re-learn all its elements. We

have shown that the inputs to the viable subnetworks are different

in the learning and execution phases. Hence, during execution of

the reaching motion, re-learning requires another “pass” through the

learning network. Thus, for example, during concurrent learning, the

coordinate transformation subnetwork V
(3)
1 should receive its input

from the self-recognition subnetwork, V
(2)
1 , and not the motion de-

tection one V
(1)
7 , as in the execution phase. This requires the mainte-

nance and re-learning of subnetworks that do not actually contribute

to the reaching task, e.g. V
(2)
1 .

0

20

40

60

80

100
(a)

H
o

ri
z
o

n
ta

l
p

ix
e

l

20 40 60 80 100 120 140 160 180 200 220

0.8

0.9

1

1.1

1.2

(b)

t

P
a

ra
m

e
te

r
c
h

a
n

g
e

Figure 7. Reaching a moving object with concurrent learning (see Supp.
Movie). (a) Horizontal position of moving object (black) and arm (gray) as a

function of time steps. (b) Percent change of motor (black) and camera
(gray) parameters.

Furthermore, we have implemented a specific arm and camera mo-

tion schedule to improve learning during the learning phase: mo-

tion detection was learned quickly because the camera consecutively

moved and then rested; arm visual self-recognition and coordinate

transformation were learned when only the arm moved. This means

that during the reaching execution stage, some biases could be in-

troduced. For example, if motion detection were learned only when

the arm moved, it would re-learn that only arm features contribute to

motion detection and would not average out all possible pixel com-

binations to produce a true motion detector. Hence, in the sequence

demonstrated in Fig. 7(a), motion detection was not re-learned, due

to the camera’s immobility. However, the rest of the components,

namely, V
(1)
1 , V

(2)
1 and V

(3)
1 were learned concurrently with the

reaching execution.

In the testing of the entire reaching network, we have added

another LEGO Mindstorm motor that controlled a moving object,

Fig. 2(a,blue object;c). It was moved to a random position to the

left and then right of the image where it then made a sudden move,

Fig. 7(a, black). The reaching network was then executed and mon-

itored via the camera, Fig. 2(a,red hand;d). We have also introduced

gradual changes to the robot’s sensors and motors to ascertain its

concurrent execution and re-learning capabilities.

Figure 7(a) shows the horizontal location of the two detected en-

tities, namely, arm and object and nicely demonstrates how the arm

follows the movement of the object. The figure first shows initial cal-

ibration errors, corrected after 70 times steps (see Supp. Movie). It is

followed by an introduction of a slow change in the motor plant of

the arm, whose maximal power increased by 20% and a degradation

of the red channel of the camera to 80% of its value, Fig. 7(b). As

can be seen in Fig. 7(a), the reaching motion is again accurate after

the change due to the network’s concurrent re-learning capabilities.

4th International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2011)
Berlin, Germany, December 9 2011

11

6 Related Works

In [5] an information theoretic approach was taken in order to au-

tonomously learn what a robot can control. By using mutual infor-

mation and moving its own hand, the robot could discern its hands

and then its fingers. However, the model included image processing

in order to extract the relevant information measures.

Ref. [30] explores several models of learning how to reach, whose

main features are the learning of internal models, namely, forward

and inverse kinematics and dynamics of the arm.While the suggested

model autonomously learns these internal models by moving the arm,

it does not address the issue of arm self-recognition, but rather uses

intense image processing to acquire the external coordinates of the

arm and the objects it interacts with.

Another humanoid robot was used to autonomously learn the co-

ordinates transformation between the head and the arm [22]. This

was done by using a fixed gaze by which the head was turned to

keep the hand in the center of the image. Then the head and arm pro-

prioception angle information was used to autonomously learn the

coordinates transformation.

Work of the same group [20] has also implemented learning of the

self via periodic motions of the hand and finding the corresponding

image features. Furthermore, building saliency maps of the visual

image and interacting with the environment, enabled building object

models in the vicinity of the robot.

Building hierarchical learning networks that extract higher or-

der correlations in the data was also performed by several groups

[12, 25]. However, they have focused on image processing, while

the model presented here focuses more on the interaction between

the motorized action and sensors, both visual and proprioception.

Ref. [33] learns generalized value functions which indeed relate

states and actions, but does not perform an exhaustive search over

these possibilities. Another related model is that of Hierarchical Tem-

poral Memory [9], which learns temporal sensory information in dif-

ferent hierarchies, where the time-scales change with hierarchy level.

The model presented here focuses more on the sensory-motor corre-

lations with the emphasis of creating a functional executable circuit

from the learned and viable subnetworks. This novel focus highlights

the relevance of active sensing [4, 28] to the autonomous learning

paradigm.

In the current implementation, we have used random motion in

order to learn the sensory-motor correlations. However, many works

have implemented active learning concepts to expedite such learning

(see [10] and references therein). More specifically, the concept of

intrinsic reward that originates from learning these transformation is

a promising avenue of research [24, 32, 11] and will be explored in

future work.

7 Discussion

A brain-inspired novel algorithm implementing the prevalent con-

cept of exuberance [13] was introduced: it starts by constructing

an exhaustive pool of subnetworks and then during learning prunes

away those that are presented with uncorrelated data sets. Repeat-

ing the procedure in a hierarchical manner results in a pool of vi-

able and reliable subnetworks that represent all the correlations the

agent can autonomously learn. These serve as an alphabet to con-

struct executable circuits that perform specific tasks, with concurrent

autonomous learning of all composing elements.

The complexity analysis presented above can hint to the underly-

ing cause of exuberance in the brain [13]. Initially, the organism does

not know which sensory information correlates with which motor

command. Hence, starting with an exhaustive connectivity and then

pruning away the non-functional elements in a hierarchical manner

results in reduced hierarchical complexity.

We have focused on 2 7→ 1 correlations and not all-to-all corre-

lations, as in self-organizing maps [27], in order to show the emer-

gence of specific functional networks, e.g. motion detection and self-

recognition. Had we constructed the first level network to have all the

inputs and one output, e.g. the camera motor command p(m2
t |D

(1)),
it would not have learned motion detection p(m2

t |ct, ct−1), since the
camera motor inverse model p(m2

t |p
2
t , p

2
t−1) would have better pre-

dicted the motor command. One may thus conclude that dividing the

input information to subsets is beneficial for constructing a truly ex-

haustive map of learnable transformations.

Furthermore, the architecture presented here used a large initial

network and then utilized pruning. One may have opted for starting

with a small network and increasing it via, e.g. cascade correlation

networks [7, 16, 31]. However, since there is evidence for death of

inactive neurons, but less of increase in the number of neurons in the

brain, we believe that pruning connections and non-active neurons is

more suitable to our brain-inspired framework than adding neurons

to a network. A thorough comparison of the performance of the two

options is beyond the scope of this paper.

The proposed model and its implementation give rise to several

interesting aspects of autonomous learning in general. From a neuro-

biological perspective, the specific suggested architecture for learn-

ing how to reach has a novel prediction that suggests connectivities

that are mandatory in order to achieve learning, e.g. an efference

copy of the eye muscles must reach the first motion detection station,

which is as low as the retina. However, it seems unlikely that basic

change detection is a learned quality of the nervous system, since

many (if not all) low-level neurons have that characteristic. How can

this be resolved? First, the question we ask is fundamental: what can

be learned, expanding beyond what indeed is learned in biological

systems. Second, evolution may also play a significant role, i.e. it is

possible that lower species have a learned motion detection archi-

tecture, but higher ones developed a genetically-encoded mechanism

to achieve the same goal. This has the added advantage of requiring

less time to manifest, meaning an organism with a “hard-wired” mo-

tion detector will detect motion earlier in development than one that

has to learn it. Furthermore, it enables the learning neuronal system

to focus on more complicated sensory-motor correlations, i.e. higher

loops. Third, the biological substrates that living organisms are made

of have some inherent qualities, and change detection, or other sim-

ple transformations, may be one of them, thus eliminating the need

to learn it during development.

Another important issue is what determines the overall execution

connectivity of the viable subnetworks. A possible biological reason-

ing is that initially all the subnetworks are connected to each other

and only those that serve some purpose and achieve a specific (re-

warding) goal survive in development. Hence, one can picture a fully

connected network in which all available information serve as both

input and output to many correlation-learning neuronal networks.

These networks are then only way-stations to other neuronal net-

works that serve as the second tier in the hierarchy and so on. Se-

lecting which network will be activated and which will control the

muscles at any given moment probably involves a rewarding mecha-

nism which is beyond the scope of the present work.

The exhaustive constructive algorithm has also surfaced a novel

concept relating active sensing [4, 28] and autonomous learning: in

the first level of the hierarchy, only active sensing sensory-motor cou-

4th International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2011)
Berlin, Germany, December 9 2011

12

plings produce viable subnetworks and those represent internal mod-

els. Specifically, the inverse model subnetworks can be used in two

complementary ways: (i) determining the proper motor command to

achieve a specific sensory goal and; (ii) detecting changes in the sen-

sory information.

Finally, the proposed implementation of the exhaustive architec-

ture is just the first step towards a more complex network with many

more capabilities. One can think of new subnetworks in all levels of

the hierarchy: a network that learns to map a visual receptive field to

the specific directional motion of the eye can learn orientation lines

and edge detection; using two cameras, one can autonomously learn

a stereoscopic coordinates transformation; head, torso and leg move-

ments can also be autonomously learned and add more flavor to a

much richer network.

To conclude, we have developed a methodology of an exhaus-

tive hierarchical construction of autonomously learning agents. We

have shown that by implementing exuberance and pruning, only vi-

able and reliable networks that actually encode correlations in the

sensory-motor information survive. Those augment higher levels’

available data to introduce more complex subnetworks. We have im-

plemented it on a robot and showed that three levels of the hierarchy

can produce a completely autonomously learned reaching arm, that is

robust to noise due to its concurrent execution and re-learning capa-

bilities. We envision that this model can be implemented on virtually

any robotic agent and can augment existing pre-programed algorith-

mic controls.

Appendix: Level 3 Subnetworks

L
(3)
1 = p(V

(2)
1 |p1

t , m
1
t) L

(3)
2 = p(V

(2)
1 |p1

t , ct)

L
(3)
3 = p(m1

t |p
1
t , V

(2)
1) L

(3)
4 = p(ct|p

1
t , V

(2)
1)

L
(3)
5 = p(V

(1)
1 |p1

t , V
(2)
1) L

(3)
6 = p(V

(1)
3 |p1

t , V
(2)
1)

L
(3)
7 = p(V

(1)
2 |p1

t , V
(2)
1) L

(3)
8 = p(V

(1)
7 |p1

t , V
(2)
1)

L
(3)
9 = p(V

(2)
1 |p1

t , V
(1)
1) L

(3)
10 = p(V

(2)
1 |p1

t , V
(1)
3)

L
(3)
11 = p(V

(2)
1 |p1

t , V
(1)
2) L

(3)
12 = p(V

(2)
1 |p1

t , V
(1)
7)

L
(3)
13 = p(V

(2)
1 |m1

t , ct) L
(3)
14 = p(p1

t |m
1
t , V

(2)
1)

L
(3)
15 = p(ct|m

1
t , V

(2)
1) L

(3)
16 = p(V

(1)
1 |m1

t , V
(2)
1)

L
(3)
17 = p(V

(1)
3 |m1

t , V
(2)
1) L

(3)
18 = p(V

(1)
2 |m1

t , V
(2)
1)

L
(3)
19 = p(V

(1)
7 |m1

t , V
(2)
1) L

(3)
20 = p(V

(2)
1 |m1

t , V
(1)
1)

L
(3)
21 = p(V

(2)
1 |m1

t , V
(1)
3) L

(3)
22 = p(V

(2)
1 |m1

t , V
(1)
2)

L
(3)
23 = p(V

(2)
1 |m1

t , V
(1)
7) L

(3)
24 = p(p1

t |ct, V
(2)
1)

L
(3)
25 = p(m1

t |ct, V
(2)
1) L

(3)
26 = p(V

(1)
1 |ct, V

(2)
1)

L
(3)
27 = p(V

(1)
3 |ct, V

(2)
1) L

(3)
28 = p(V

(1)
2 |ct, V

(2)
1)

L
(3)
29 = p(V

(1)
7 |ct, V

(2)
1) L

(3)
30 = p(V

(2)
1 |ct, V

(1)
1)

L
(3)
31 = p(V

(2)
1 |ct, V

(1)
3) L

(3)
32 = p(V

(2)
1 |ct, V

(1)
2)

L
(3)
33 = p(V

(2)
1 |ct, V

(1)
7) L

(3)
34 = p(p1

t |V
(2)
1 , V

(1)
1)

L
(3)
35 = p(m1

t |V
(2)
1 , V

(1)
1) L

(3)
36 = p(ct|V

(2)
1 , V

(1)
1)

L
(3)
37 = p(V

(1)
3 |V

(2)
1 , V

(1)
1) L

(3)
38 = p(V

(1)
2 |V

(2)
1 , V

(1)
1)

L
(3)
39 = p(V

(1)
7 |V

(2)
1 , V

(1)
1) L

(3)
40 = p(p1

t |V
(2)
1 , V

(1)
3)

L
(3)
41 = p(m1

t |V
(2)
1 , V

(1)
3) L

(3)
42 = p(ct|V

(2)
1 , V

(1)
3)

L
(3)
43 = p(V

(1)
1 |V

(2)
1 , V

(1)
3) L

(3)
44 = p(V

(1)
2 |V

(2)
1 , V

(1)
3)

L
(3)
45 = p(V

(1)
7 |V

(2)
1 , V

(1)
3) L

(3)
46 = p(p1

t |V
(2)
1 , V

(1)
2)

L
(3)
47 = p(m1

t |V
(2)
1 , V

(1)
2) L

(3)
48 = p(ct|V

(2)
1 , V

(1)
2)

L
(3)
49 = p(V

(1)
1 |V

(2)
1 , V

(1)
2) L

(3)
50 = p(V

(1)
3 |V

(2)
1 , V

(1)
2)

L
(3)
51 = p(V

(1)
7 |V

(2)
1 , V

(1)
2) L

(3)
52 = p(p1

t |V
(2)
1 , V

(1)
7)

L
(3)
53 = p(m1

t |V
(2)
1 , V

(1)
7) L

(3)
54 = p(ct|V

(2)
1 , V

(1)
7)

L
(3)
55 = p(V

(1)
1 |V

(2)
1 , V

(1)
7) L

(3)
56 = p(V

(1)
3 |V

(2)
1 , V

(1)
7)

L
(3)
57 = p(V

(1)
2 |V

(2)
1 , V

(1)
7) L

(3)
58 = p(V

(2)
1 |V

(1)
1 , V

(1)
3)

L
(3)
59 = p(V

(2)
1 |V

(1)
1 , V

(1)
2) L

(3)
60 = p(V

(2)
1 |V

(1)
1 , V

(1)
7)

L
(3)
61 = p(V

(2)
1 |V

(1)
3 , V

(1)
2) L

(3)
62 = p(V

(2)
1 |V

(1)
3 , V

(1)
7)

L
(3)
63 = p(V

(2)
1 |V

(1)
2 , V

(1)
7) .

(6)

The twenty viable subnetworks can be grouped into three equiva-

lent classes:

1. Subnetworks with arm angle-related output: V
(3)
1−12 =

L
(3)
14,24,34,40,46,52,7,18,28,38,44,57. Notice that V

(1)
2 is the for-

ward model of the arm motor and during training is completely

equivalent to p1
t .

2. Subnetworks with arm motor-related output: V
(3)
13−18 =

L
(3)
5,16,26,43,49,55. Notice that V

(1)
1 which appears as an output in

these subnetworks is the inverse model of the arm. During training

it is completely equivalent to m1
t .

3. Subnetworks with the arm’s previous angle output: V
(3)
19−20 =

L
(3)
17,37. Notice that V

(1)
3 which appears the output in these sub-

networks is the postdiction model of the arm and during training

is completely equivalent to p1
t−1.

REFERENCES

[1] D. H. Ballard, ‘Animate vision’, Artif. Intell., 48(1), 57–86, (1991).
[2] N. E. Berthier and R. Keen, ‘Development of reaching in infancy’, Exp

Brain Res, 169(4), 507–18, (2006).
[3] T. B. Crapse and M. A. Sommer, ‘Corollary discharge across the animal

kingdom’, Nat Rev Neurosci, 9(8), 587–600, (2008).

4th International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2011)
Berlin, Germany, December 9 2011

13

[4] K. E. Cullen, ‘Sensory signals during active versus passive movement’,
Curr Opin Neurobiol, 14(6), 698–706, (2004).

[5] A. Edsinger and C. C. Kemp, ‘What can i control? a framework for
robot self-discovery’, in The sixth international conference on epige-

netic robotics (EpiRob).
[6] R. Epstein and N. Kanwisher, ‘A cortical representation of the local

visual environment’, Nature, 392(6676), 598–601, (1998).
[7] S.E. Fahlman and C. Lebiere. The cascade-correlation learning archi-

tecture, 1990.
[8] N. Fnaiech, F. Fnaiech, and B. Jervis, Feedforward Neural Networks

Pruning Algorithms, 1–16, Electrical Engineering Handbook, CRC
Press, 2011.

[9] D. George and J. Hawkins, ‘Towards a mathematical theory of cortical
micro-circuits’, PLoS Comput Biol, 5(10), e1000532, (2009).

[10] G. Gordon, D. M. Kaplan, B. Lankow, D. Y. Little, J. Sherwin, B. A.
Suter, and L. Thaler, ‘Toward an integrated approach to perception and
action: conference report and future directions’, Front Syst Neurosci, 5,
20, (2011).

[11] G. Gordon and E. Ahissar, ‘Reinforcement active learning hierarchical
loops’, in International Joint Conference on Neural Networks (IJCNN).

[12] G. E. Hinton and R. R. Salakhutdinov, ‘Reducing the dimensionality of
data with neural networks’, Science, 313(5786), 504–7, (2006).

[13] G. M. Innocenti and D. J. Price, ‘Exuberance in the development of
cortical networks’, Nat Rev Neurosci, 6(12), 955–965, (2005).

[14] M. I. Jordan, ‘Forward models: Supervised learning with a distal
teacher’, Cognitive Science, 16, 307–354, (1992).

[15] N. Kanwisher, J. McDermott, andM.M. Chun, ‘The fusiform face area:
a module in human extrastriate cortex specialized for face perception’,
J Neurosci, 17(11), 4302–11, (1997).

[16] M. Kawato, Y. Maeda, Y. Uno, and R. Suzuki, ‘Trajectory formation of
arm movement by cascade neural network model based on minimum
torque-change criterion’, Biol Cybern, 62(4), 275–88, (1990).

[17] C. C. Kemp and A. Edsinger, ‘What can i control?: The development
of visual categories for a robot’s body and the world that it in uences.’,
in 5th IEEE International Conference on Development and Learning

(ICDL5): Special Session on Perceptual Systems and their Develop-

ment.
[18] H. Lalazar and E. Vaadia, ‘Neural basis of sensorimotor learning: mod-

ifying internal models’, Curr Opin Neurobiol, (2008).
[19] E. P. Merriam and C. L. Colby, ‘Active vision in parietal and extrastriate

cortex’, The Neuroscientist, 11(5), 484–493, (2005).
[20] L. Natale, F. Orbona, G. Metta, and G. Sandini, ‘Exploring the world

through grasping: a developmental approach’, in IEEE International

Symposium on Computational Intelligence in Robots and Automation.
[21] D. Nguyen-Tuong, J. Peters, M. Seeger, and B. Schlkopf, ‘Learning

inverse dynamics: A comparison’, in European Symposium on Artificial

Neural Networks (ESANN 2008), pp. 13–18.
[22] F. Nori, L. Natale, G. Sandini, and G. Metta, ‘Autonomous learning of

3d reaching in a humanoid robot’, in IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems.
[23] J. Kevin O’Regan, No, euml, and Alva , ‘A sensorimotor account of vi-

sion and visual consciousness’, Behavioral and Brain Sciences, 24(05),
939–973, (2001).

[24] P. Y. Oudeyer, F. Kaplan, and V. V. Hafner, ‘Intrinsic motivation sys-
tems for autonomous mental development’, Evolutionary Computation,
IEEE Transactions on, 11(2), 265–286, (2007).

[25] M. Ranzato, Y. lan Boureau, and Y. Lecun, ‘Sparse feature learning for
deep belief networks’, in Advances in Neural Information Processing

Systems.
[26] R. Reed, ‘Pruning algorithms-a survey’, Neural Networks, IEEE Trans-

actions on, 4(5), 740–747, (1993).
[27] H. Ritter, ‘Self-organizing maps for robot control’, in Proceedings of

the 7th International Conference on Artificial Neural Networks (1997).
[28] C. E. Schroeder, D. A. Wilson, T. Radman, H. Scharfman, and

P. Lakatos, ‘Dynamics of active sensing and perceptual selection’, Curr
Opin Neurobiol, 20(2), 172–6, (2010).

[29] R. Shadmehr and J. W. Krakauer, ‘A computational neuroanatomy for
motor control’, Exp Brain Res, 185(3), 359–81, (2008).

[30] R. Shadmehr, ‘Generalization as a behavioral window to the neural
mechanisms of learning internal models’, Human Movement Science,
23, 543–568, (2004).

[31] S. K. Sharma and P. Chandra, ‘Constructive neural networks: A review’,
International Journal of Engineering Science and Technology, 2(12),
7847–7855, (2010).

[32] S. Singh, R. L. Lewis, A. G. Barto, and J. Sorg, ‘Intrinsically motivated
reinforcement learning: An evolutionary perspective’, Autonomous

Mental Development, IEEE Transactions on, 2(2), 70–82, (2010).
[33] Richard S. Sutton, Joseph Modayil, Michael Delp, Thomas Degris,

Patrick M. Pilarski, Adam White, and Doina Precup, ‘Horde: a scal-
able real-time architecture for learning knowledge from unsupervised
sensorimotor interaction’, in The 10th International Conference on Au-
tonomous Agents and Multiagent Systems - Volume 2 (2011).

[34] E. Todorov and Z. Ghahramani, ‘Unsupervised learning of sensory-
motor primitives’, in 25th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society. 2, 1750-1753, (2003).

4th International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2011)
Berlin, Germany, December 9 2011

14

An Application of Genetic Algorithms to Model Leg–Soil
Interaction

Malte Römmermann1 and Mohammed Ahmed1 and Lorenz Quack1 and Yohannes Kassahun2

Abstract. This paper introduces an application of a genetic algo-

rithm to generate a model for leg–soil interaction to be used in an in-

teractive real time simulation. In the field of legged robotics, the use

of walking and climbing robots becomes very useful for extraterres-

trial applications, e.g., collection of samples from lunar crater beds.

To efficiently simulate such a space mission, a realistic robot leg–soil

interaction model is required. Using artificial neural networks as con-

tact model for an interactive real time simulation is novel and this pa-

per describes how the integration can be done. This paper deals only

with the normal force of a foot soil contact. However, an outlook on

how the lateral forces can be integrated is given as well.

A genetic algorithm is implemented to evolve artificial neural net-

works representing the leg–soil interaction. The data to evolve the

neural networks with is collected by a series of experiments per-

formed with an industrial robotic arm equipped with a six axes

force/torque sensor and a state of the art walking and climbing

robot’s foot. The genetic algorithm evolves the structure and the pa-

rameters of the neural network. The paper describes the neural net-

work, the genetic algorithm, and the indirect graph representation.

Moreover, the integration of the model into a fully rigid body legged

robot simulator is presented.

1 INTRODUCTION

Creating an analytical model for soil-contact mechanics is a well re-

searched field of wheeled robotics [6, 7, 10]. Even if there are well

defined physical soil-properties that are used within the analytical

models, there are always several parameter that have to be chosen

empirically. Thus, a realistic soil-contact model needs always a tun-

ing by comparison with real measured experiment data. Due to the

fact, that real data is always necessary, this paper describes an ap-

proach that approximates the real data by evolving a neural network.

The neural network includes an interpolation of the real measurement

data and is able to generalise the whole variance of the soil behaviour,

which is measured due to slightly different soil compactions. The fo-

cus of this paper is a soil-contact model for a legged robot developed

in the SpaceClimber project [13].

1.1 Review of Neuroevolution (NE)

The development of a neural network through an evolutionary algo-

rithm is called neuroevolution (NE). In neuroevoution, an artificial

1 German Research Center for Artificial Intelli-
gence – DFKI Bremen-Robotics Innovation Center –
Robert-Hooke-Str. 5, 28359 Bremen, Germany, email:
{malte.roemmerman,mohammed.ahmed,lorenz.quack}@dfki.de

2 Robotics Group – University of Bremen – 28359 Bremen, Germany, email:
kassahun@informatik.uni-bremen.de

neural network (ANN) is used to provide a straightforward mapping

between inputs (states perceived by the sensors) and outputs (actions

executed by the actuators). ANNs are useful in robotics since they are

robust to noise. Their robustness comes from their inherent structure,

i.e their units are typically based upon a sum of several weighted sig-

nals. Thus, oscillations in the individual values of these signals do

not drastically affect the behaviour of the network.

The field of neuroevolution can be broadly divided along two ma-

jor axes depending on which aspects of the ANN are encoded in the

genotype and how the mapping from genotype to phenotype is de-

fined. The first axis divides methods which evolve only the connec-

tion weights of the ANN but keep the structure (i. e. network topol-

ogy) fixed [14, 5] from those methods which evolve structure and

weights in parallel. The second axis divides methods where the map-

ping from genotype to phenotype is kept fixed during evolution from

those methods which use an adaptive mapping which itself is subject

to evolution. This mapping is also called an embryogeny or develop-

ment function. According to Bentley and Kumar [1], three different

types of embryogenies have been used in evolutionary systems: ex-

ternal, explicit, and implicit. External means that the developmental

process (i. e. the embryogeny) itself is not subjected to evolution but

is hand-designed and defined globally and externally to the geno-

types In explicit (evolved) embryogeny the developmental process

itself is explicitly specified in the genotypes, and thus it is affected

by the evolutionary process [4, 3]. Usually, the embryogeny is repre-

sented in the genotype as a tree-like structure following the paradigm

of genetic programming. The third kind of embryogeny is implicit

embryogeny, which comprises neither an external nor an explicit in-

ternal specification of the growth process. Instead, the embryogeny

”emerges” implicitly from the interaction and activation patterns of

the different genes [2]. This kind of embryogeny has the strongest

resemblance to the process of natural evolution.

In the past, neuroevolution methods have been applied to evolu-

tionary robotics. In evolutionary robotics, many aspects of a robotic

system can be evolved, ranging from the structure of its control archi-

tecture over certain modules of such an architecture to the evolution

of the robot’s morphology [11]. In this paper, we present such an ap-

plication of neuroevolution to the modelling of leg soil interaction for

a legged robot. The neuroevoution used in this paper evolves both the

structure and parameters of the neural network but the developmental

process (embryogeny) is fixed and not subjected to evolution.

2 NEURAL NETWORK

The neural network used for this paper is kept simple by using

perceptron based neurones that can have connected inputs and

outputs. The perceptron used is shown in figure 1. The inputs are

weighted and afterwards combined by a transfer function. The

4th International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2011)
Berlin, Germany, December 9 2011

15

4th International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2011)
Berlin, Germany, December 9 2011

16

perceptron created by the decoding gets an additional output, which

represents the overall network output and is used in the simulation as

normal force of the foot-soil contact.

4 INTEGRATION

The SpaceClimber simulation is a DFKI internal software already

used in the development process of the SpaceClimber [9]. Later on

the simulated robot behaviour was evaluated and compared with the

real developed robot [8]. The physical simulation is done by the Open

Dynamics Engine (ODE) [12], which is a widely used rigid body

simulation library.

To integrate the neural network into the simulation, the standard

ODE contact points are used. An ODE contact point is created by the

collision detection and includes parameters like the contact depth,

a friction coefficient and ODE internal parameter like the error re-

duction parameter (erp) and the constraint force mixing parameter

(cfm).

The erp and cfm parameter can be used to model spring/damping

properties of a contact point. The ODE manual provides a formula

to compute erp and cfm using a spring constant (kp), a damping

constant (kd), and the simulation time step (h). The spring constant

is calculated with the normal force output of the neural network (f)

and the contact depth (d) with kp = f

d
. A damping parameter is

chosen manually with the policy to get as little damping as possible

without a oscillating contact behaviour. The damping parameter used

in the implementation is kd = 100.

Using the simple spring/damper implementation results in an in-

correct foot–soil behaviour in the dynamic simulation. In the case

of a foot contact with a current load l a resulting contact depth is

reached with a normal force equal to the load l. If the load is de-

creasing due to force distribution on other legs, the spring properties

push the foot to a smaller depth, that results in a normal force cor-

responding to the new load. This behaviour is not observed in real

soil, once the soil is displaced it will not create more force than the

current load.

To adapt this behaviour a foot print implementation is done where

every new foot soil contact is saved with the maximum immersion

(deformation) and a random variance parameter that is used for the

neural network. Technically, the ODE depth parameter of the con-

tact point is reduced by the saved immersion before calculating kp.

Afterwards, the new maximum immersion is saved in the foot print.

Each new foot print is stored in a list with the position and the last

penetration depth. In this way also the effect of re-entering a foot

print is taken into account.

5 EXPERIMENTS

To test the functionality of the genetic algorithm a set of test func-

tions are chosen. The complexity of the test functions is similar to the

expected complexity of the foot-soil contact behaviour. The second

part of this section shortly describes the collection of real experiment

data.

5.1 Test Functions

The whole implementation is tested on predefined functions

fn : R → R. The test functions are:

f1(x) = x3 + 7 f2(x) = sin(x) · x
f3(x) = sin(x) + 2x f4(x) = x2 + 6 + 4sin(x)

 0

 200

 400

 600

 800

 1000

 1200

 0 2 4 6 8 10

f(
x
)

x

f(x)=x*x*x+7
neural net

-6

-4

-2

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

f(
x
)

x

f(x)=sin(x)*x
neural net

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10

f(
x
)

x

f(x)=sin(x)+2x
neural net

 0

 20

 40

 60

 80

 100

 120

 0 2 4 6 8 10

f(
x
)

x

f(x)=x*x+6+sin(x)*4
neural net

Figure 4. Results of the evolved networks plotted together with the test
functions f1 - f4.

where x is the test functions and the neural network input with 0 ≤

x ≤ 10. The variance parameter introduced in section 3.3 is not used

for the test functions. Altogether, the algorithm is able to find a close

approximation of all test functions. The results are shown in figure 4.

5.2 Real Experiment Data

In order to obtain reference data for training and verification of the

neural network a series of soil experiments is performed. The Schunk

LWA-3 robotic arm with a six axes force/torque sensor and a spher-

ical robotic foot attached is used. After positioning the foot above

the ground it is pushed perpendicular to the surface into the soil at a

constant speed of 1 mm/s. Between experiments the soil is manually

loosened and levelled. Still there is noticeable variance in the result-

4th International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2011)
Berlin, Germany, December 9 2011

17

4th International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2011)
Berlin, Germany, December 9 2011

18

 0

 20

 40

 60

 80

 100

 120

fo
rc

e
 [

N
]

experiment data
network output

experiment data
network output

experiment data
network output

 0

 20

 40

 60

 80

 100

 120

fo
rc

e
 [

N
]

experiment data
network output

experiment data
network output

experiment data
network output

 0

 20

 40

 60

 80

 100

 120

fo
rc

e
 [

N
]

experiment data
network output

experiment data
network output

experiment data
network output

 0

 20

 40

 60

 80

 100

 120

fo
rc

e
 [

N
]

experiment data
network output

experiment data
network output

experiment data
network output

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30 35

fo
rc

e
 [

N
]

depth [mm]

experiment data
network output

 0 5 10 15 20 25 30 35

depth [mm]

experiment data
network output

 0 5 10 15 20 25 30 35

depth [mm]

experiment data
network output

Figure 8. Comparison between experiment data and output of the neural network.

7 CONCLUSION

Altogether, the neural network approach is able to approximate the

measured foot-soil behaviour for the contact normal force. The neu-

ral network represents a generalisation of the whole measured vari-

ance range and is already combined with a standard rigid body sim-

ulation. The calculation time of the network is fast enough to be

used in an interactive real–time simulation on a standard desktop

PC. Within this paper the whole measured experiment data is used to

evolve the neural network. In the future, the generalisation features

of the neural network can be verified by further experiments, where

one half of the data is used to evolve the network and the other half

is used for verification.

Additionally, the approach can be extended by using one neural

network for different feet sizes, using the foot size as additional net-

work input. The same might be possible for different soil properties

like density and granularity.

The focus of the following work is to measure the shear forces of a

foot while moving the foot through the soil. The shear forces can be

approximated by a second evolved neural network. The network in

combination with the result of this paper should represent the com-

plete foot-soil contact mechanics needed to predict the behaviour of

a walking robot on loose soil similar to the soil used for the creation

of the networks.

4th International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2011)
Berlin, Germany, December 9 2011

19

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30 35

fo
rc

e
[N

]

depth [mm]

foot-soil immersion network output

Figure 9. Resulting neural network output with the variance parameter in the range of one to tree in 100 steps. Thus, each curve depicts the network output of
a corresponding variance value, whereby the lowest curve is plotted with a variance value of 1.0 and the highest curve with a variance value of 3.0.

Figure 11. The SpaceClimber robot in the simulation with the new
developed foot-soil interaction.

ACKNOWLEDGEMENTS

The presented work is sponsored by the German Aerospace Center

through the Virtual Crater [?] project (DLR: no. 50RA0903) and the

SpaceClimber [13] project (DLR: no. 50RA0705) and the European

Space Agency (ESA: contract no. 18116/04/NL/PA).

We thank all team members of the Virtual Crater and Space-

Climber projects at the German Research Center for Artificial Intelli-

gence (DFKI) for their expertise and guidance, which were essential

to this study.

REFERENCES

[1] P. Bentley and S. Kumar, ‘Three ways to grow designs: A comparison
of embryogenies for an evolutionary design problem’, in Proceedings of

the Genetic and Evolutionary Computation Conference (GECCO-99),
volume 1, pp. 35–43, Orlando, Florida, USA, (July 1999).

[2] J. C. Bongard and R. Pfeifer, ‘Repeated structure and dissociation of
genotypic and phenotypic complexity in artificial ontogeny’, in Pro-

ceedings of the Genetic and Evolutionary Computation Conference,

(GECCO-2001), pp. 829–836, (2001).
[3] D. B. D’Ambrosio and K. O. Stanley, ‘A novel generative encoding

for exploiting neural network sensor and output geometry’, in Pro-

ceedings of the 9th Genetic and Evolutionary Computation Conference

(GECCO-2007), pp. 974–981, (2007).
[4] F. Gruau, Neural Network Synthesis Using Cellular Encoding and the

Genetic Algorithm, Ph.D. dissertation, Ecole Normale Superieure de
Lyon, Laboratoire de l’Informatique du Parallelisme, France, January
1994.

[5] C. Igel, ‘Neuroevolution for reinforcement learning using evolution
strategies’, in Congress on Evolutionary Computation (CEC2003), eds.,
R. Sarker, R. Reynolds, H. Abbass, K. C. Tan, B. McKay, D. Essam, and
T. Gedeon, volume 4, 2588–2595, IEEE Press, (2003).

[6] Hirzinger G Krenn R., ‘Simulation of rover locomotion on sandy terrain
- modeling, verification and validation’, ASTRA 2008, (Noordwijk, The
Netherlands (November 2008)).

[7] Ellery A. Patel N. and Scott G., ‘Application of bekker theory to
wheeled, tracked and legged vehicles’, SPACE 2004, (San Diego, Cali-
fornia, USA. (September 2004)).

[8] M. Römemrmann, S. Bartsch, and S. Haase, ‘Validation of simulation-
based morphology design of a six-legged walking robot’, in 13th Inter-

national Conference on Climbing and Walking Robots and the Support

Technologies for Mobile Machines, 2010, 31 August - 03 September,

Nagoya, Japan, (2010).
[9] M. Römmermann, D. Kühn, and F. Kirchner, ‘Robot design for space

missions using evolutionary computation’, in IEEE Congress on Evo-

lutionary Computation (IEEE CEC 2009), (2009).
[10] D. Rubinstein and R. Hitron, ‘A detailed multi-body model for dynamic

simulation of off-road tracked vehicles’, Journal of Terramechanics,
41(2-3), 163–173, (2004). 14th International Conference of the ISTVS.

[11] K. Sims, ‘Evolving virtual creatures’, Computer Graphics (SIGGRAPH

Proceedings), 15–22, (1994).
[12] R. Smith. Open dynamics engine, www.ode.org, 2005.
[13] SpaceClimber Project. http://robotik.dfki-

bremen.de/en/research/projects/space-robotics/spaceclimber.html.
[14] A. Wieland, ‘Evolving controls for unstable systems’, in Proceedings of

the International Joint Conference on Neural Networks, pp. 667–673,
(1991).

4th International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2011)
Berlin, Germany, December 9 2011

20

A Model of Head Direction Cells with Changing
Preferred Head Direction

Theocharis Kyriacou and John Butcher and Charles Day 1

Abstract.

A biologically inspired model of head direction cells is presented

and tested on a small mobile robot. Head direction cells (discovered

in the brain of rats in 1984) encode the head orientation of their host

irrespective of the host’s location in the environment. The head direc-

tion system thus acts as a biological compass (though not a magnetic

one) for its host. Head direction cells are influenced in different ways

by idiothetic (host-centred) and allothetic (not host-centred) cues.

The model presented here uses the visual, vestibular and kinesthetic

inputs that are simulated by robot sensors. The model is tested under

different input conditions whereby the three inputs are in agreement

or in disagreement. In particular, the case when the environment is

rotated about the robot while the robot is stationary is considered.

According to biological observations the preferred head direction of

head direction cells changes in proportion to the environment rotation

during this condition. A mechanism is proposed to replicate these bi-

ological observations.

1 Introduction: Biologically Inspired Robot
Navigation

Biologically inspired navigation methods can perhaps be put in two

broad categories. In the first, methods draw only from observations

of animal behaviour without considering the underlying cognitive

mechanisms that play a part in navigation. Tolman in 1946 (see [23])

was among the first who conducted experiments with rats that al-

lowed such observations, but more recent work using rodents and

insects is presented for example in [2] and [25].

In contrast, “bottom-up” approaches to bio-inspired models of

navigation make use of knowledge obtained by observing the brain

activity of animals while they perform navigational tasks (see for ex-

ample [14]). During such experiments, the activity of a few brain

cells can be recorded by means of microelectrodes. This gives some

clues as to how a navigational mechanism is implemented in the

brain. Bio-inspired models in this category make quite a lot of ex-

trapolations that try to fill in the gaps.

Three types of brain cells called place cells (see [16]), head di-

rection cells (see [21]) and grid cells (see [9]) have been discovered

(mostly from experiments conducted on rats) and are thought to play

a significant role in animal navigation. The work in this paper con-

centrates on head direction cells (or HD cells) and presents a model

of these cells that is inspired by biological observations. A more de-

tailed description of HD cells and an overview of previous work in

modelling them is presented below.

1 All authors are affiliated with the Research Institute for the Environment,
Physical Sciences and Applied Mathematics (EPSAM), Keele University,
Staffordshire, United Kingdom.

1.1 Head Direction Cells

The most recent comprehensive review of neurophysiological obser-

vations related to HD cells is found in [26]. Here below, the main

characteristics of the HD system are outlined.

Head direction cells were first discovered in 1984 by Ranck Jr. and

more detailed findings on them were published in 1990 by Taube and

colleagues (see [21]). An HD cell fires maximally when the animal’s

head points in a particular direction. This is called the preferred head

direction of the particular cell. The HD system includes a popula-

tion of HD cells with preferred head directions distributed through

360◦. The activity of an HD cell does not depend on the location of

the animal in the environment. The head direction cell system can

thus be thought of as being a biological head compass (though not

a magnetic one) that is influenced by several senses. When an ani-

mal is placed in a new environment the preferred head direction of

each cell in the HD system quickly settles to an arbitrary value. The

system maintains this alignment for the specific environment even

if the animal is removed and re-introduced back to the same envi-

ronment. This alignment will only be reset (i.e. the environment will

be treated as a new, previously unseen one) if several weeks have

passed before the animal is re-introduced in the environment ([21]).

The visual sense is the major input that helps to align the HD system

when the animal is introduced in a previously visited environment.

Strong visual cues (for example large and prominent landmarks) can

influence the preferred head direction of HD cells (see experiments

and observations in [15] and [21]). Another major input to the HD

system is the vestibular sense. This allows the animal to maintain

a correct head direction for some time after visual input is removed

(by switching off the lights for example). Apart from the most impor-

tant two inputs to the HD system mentioned above, other cues also

play a part in influencing the preferred head direction of HD cells.

These include olfactory cues (see [7]) and cues that are involved in

self-locomotion (motor, kinesthetic and proprioceptive) (see [20] for

a review). Cues to the HD system are classified in two categories:

they can be allothetic, i.e. not self-centred (for example visual and

olfactory) or idiothetic, i.e. self-centred (for example vestibular and

kinesthetic). When two or more inputs to the HD system are in con-

flict the response of the system depends on several factors such as

for example, the relative influence on the HD system, the conflicting

perceptual modalities, the extent of the conflict and the magnitude

of the inputs to the system (see example in [6]). Conflicts are exten-

sively discussed in [26]. See also [20] for a more concise review.

1.2 Models of Head direction Cells

Several attempts have been made to model the HD system. Redish

and colleagues in [17] and Goodridge and Touretzky in [8] present

4th International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2011)
Berlin, Germany, December 9 2011

21

anatomically faithful models but these only use the vestibular sense.

In both cases the neural network weights are prescribed (i.e. not ob-

tained by training). The models are however tested using real data

obtained from experiments with rats. Models using both visual and

vestibular inputs are presented in [18], [19] and [27]. In all three

cases the model weights are also prescribed and tests are carried out

in simulated environments. Also, only in [27] were input conflict sit-

uations simulated and compared with biological observations. Only

a few examples exist in the literature of HD system models applied

to real robotic agents. Of these, the most notable are presented in

[1] and [5]. Both models incorporate visual and vestibular inputs but

again, in both cases the models’ weights are prescribed.

A model of the head direction system is presented by one of the

authors in [10]. The model is original (compared to previous work) in

that it uses three inputs (the visual, vestibular and kinesthetic senses)

and in that it is trained and tested using (noisy) data obtained from

a real robot. The author also considers different input situations and

makes qualitative comparisons with biological observations.

In [3] a series of experiments were conducted, using rats in a sim-

plified cylindrical environment, in order to determine the relative in-

fluence of the visual and vestibular senses to HD cells. In one of

these experiments it was observed that the preferred head direction

of HD cells remained mostly fixed when the environment walls were

rotated. In other words, the rats maintained their original orienta-

tion (in the world reference frame) despite visual cues suggesting

otherwise. Human experience suggests that a similar effect must be

happening in the human brain. For example, when the environment

around us moves while we are aware (from idiothetic cues) that we

are not moving, despite the unease that this conflict causes, we are

able to tell that it is indeed the environment that is moving and not

us.

The model presented in this paper is novel in that it incorporates

a mechanism that enables the modelled HD system to respond to the

above described condition in the same way as biological experiments

suggest. Furthermore, central to the proposed mechanism is a biolog-

ically plausible structure (the Continuous Attractor Neural Network

or CANN - explained in section 2). To the best knowledge of the au-

thors no previous attempt has been made to incorporate this feature

in a model of the HD system.

Details of the model are given in two parts. First the core model

is presented and tested in sections 2 to 5. The extended model is

presented and tested in sections 6 and 7 respectively. A discussion

and concluding remarks are presented in section 8.

2 The Core Model

The HD system model presented here is using a continuous attractor

neural network (see introduction by Trappenberg in [4]). A continu-

ous attractor neural network (CANN) is a network of interconnected

nodes. In a fully connected network each node is connected via

weighted connections to every other node including itself. A CANN

is thus a form of recurrent network. The operation of the network is

such that nodes in close association excite each other (via excitatory

connections). The amount of excitation being proportional to the de-

gree of association between the nodes. On the other hand, nodes that

are less associated with each other are connected with inhibitory con-

nections. The connection weights from one node to all other nodes

are often prescribed by a Gaussian function with its tails below zero

(the negative weight values for the inhibitory connections). A CANN

gives rise to a self-sustained “hill” of excitation (the attractor) in the

network. If the network is perfectly symmetrical about each node

50 100 150 200 250 300 350

0.2

0.4

0.6

0.8

1

node

n
o
rm

a
lis

e
d
 e

x
c
it
a
ti
o
n

Figure 1. The state (rHD) of the HD system when it points at 45◦.

(both in connectivity and weight values to other nodes) the attractor

will be stationary when the network has no external influences. Ex-

ternal input stimuli that temporarily distort the network’s symmetry

(by biassing the activation of nodes) can cause the attractor to move.

In the case of the HD system model presented here the CANN

network is comprised of 360 nodes (the HD cells) and it is fully con-

nected. Each node is associated with a preferred head direction and it

is therefore most active when the subject (the host of the HD system)

is facing in that direction. Conceptually the nodes can be considered

as being arranged in a circle in order of preferred head direction2.

Figure 1 shows the state of the HD system (rHD) when it points to

45◦ (from an arbitrary reference direction).

The state (i.e. the excitation of each node) of the network imple-

mentation presented here is a function of the previous state of the

system and three inputs: visual, vestibular and the kinesthetic. Figure

2 is a partial diagram that shows how these inputs are connected to

the HD cells. The reader is referred to the caption of the figure for a

detailed explanation.

The activation hHD
i at time t of a head direction cell i in the model

can be determined using the following differential equation:

τ
dhHD

i (t)

dt
= −h

HD
i (t)

+θRC
∑

j

(wRC
ij − w

INH)rHD
j (t)

+θVIS
I
VIS
i (t)

+θVES
∑

jk

w
VES
ijk r

HD
j (t)rVES

k (t)

+θKIN
∑

jk

w
KIN
ijk r

HD
j (t)rKIN

k (t) (1)

where rHD
i (t) is the firing rate (excitation) of HD cell i given by

the sigmoid function:

r
HD
i (t) =

1

1 + e−2βhHD

i
(t)

(2)

τ is the time constant of the system, wRC
ij is the recurrent connec-

tion weight from HD cell j to HD cell i, IVIS
i is the visual input to

HD cell i, rVES
k is the firing rate of vestibular sensor cell k, wVES

ijk

is the weight value of the connection from HD cell j to vestibular

TMHD cell i that is associated with the vestibular sensor cell k. Sim-

ilarly, rKIN
k is the firing rate of kinesthetic sensor cell k and wKIN

ijk

is the weight value of the connection from HD cell j to kinesthetic

TMHD cell i that is associated with the kinesthetic sensor cell k.

The factors θRC, θVIS, θVES and θKIN control the influence of the

2 This arrangement however is not necessary. In fact, in the brain, HD cells
have not been found to be arranged in any particular order that relates to
their preferred head direction.

4th International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2011)
Berlin, Germany, December 9 2011

22

�VES

�VÿS

w1
VES

wRC
CANN

(HD�Cells)

Vestibular�TMHD�Cells�

(clockwise)

Vestibular�TMHD�Cells�

(counterrclockwise)

r
1
VES r

2
VES

w2
VES

�VES

IVÿS

rHD

Vestibular�sensor�cell

(clockwise)

Vestibular�sensor�cell

(counterrclockwise)

Figure 2. A partial diagram of the network of the HD model showing only
the visual and vestibular inputs. The CANN (HD cells) is a fully connected

network of 360 nodes with connection weights wRC. The excitation rHD of
the HD layer nodes is the output of the system and it indicates the direction
in which the HD system is pointing at a given time. The visual input IVIS is
a 360-element vector that is directly (one-to-one) connected to the HD cells.

Two groups of cells (for clockwise and anti-clockwise vestibular input)
called Turn-Modulated Head Direction cells (TMHD - see [26], chapter 18)
are connected to the HD cells in such a way so as to distort the symmetry of

the CANN whenever there is vestibular input and thus cause the CANN
attractor to move. One TMHD group of cells receives input from a single

cell (called the vestibular sensor cell) that simulates the clockwise vestibular
sense. Similarly the other TMHD group of cells receives input from another
vestibular sensor cell that simulates the anti-clockwise vestibular sense. In a
similar fashion there exist another two groups of TMHD cells (not shown for
clarity) that are associated with the kinesthetic sense. These two groups are

driven by two cells respectively that simulate the clockwise and
anti-clockwise kinesthetic senses. TMHD cells are implemented here using
sigma-pi neurons. These are neurons that compute the sum of products of

their inputs (see [12]). Connections shown with bold lines are trained
whereas those with thin lines are not.

recurrent, visual, vestibular and kinesthetic inputs respectively to the

HD cells. Finally, wINH is a constant negative offset to the recurrent

connection weights that serves as a quick way to make the connec-

tion weights between distant cells negative (inhibitory). The weights

wRC, wVES and wKIN can be prescribed using Gaussian-like func-

tions like for example in [18], [19] and [27] but this method is not

biologically plausible and conveniently ignores the effects of noise to

the weight values. Here, training data is collected using a real robot

and applied to the model’s weights using Hebbian learning as ex-

plained below.

3 Experimental Setup

The model described above was trained and tested using a LEGO R©

robot with an on-board omnidirectional video camera (see figure 3).

The robot is further equipped with a gyroscopic sensor and an ac-

celeration sensor. For locomotion, the robot uses two active wheels

and a dummy castor. For the purposes of the work presented here, the

visual input to the HD model was provided by processing the image

from the omnidirectional video camera on the robot (see figure 4 for

an example of a video image). The vestibular input was provided di-

rectly by the gyro sensor. One vestibular sensor cell (see figure 2) was

driven by the raw gyro signal and the other by the inverted version of

the gyro signal. The two kinesthetic inputs were provided by differ-

Figure 3. The LEGO R© MINDSTORMS R© NXT robot used for the
experiments presented here. The robot is equipped with an on-board

omnidirectional video camera (above the NXT brick) a gyroscopic sensor
and an acceleration sensor (pictured to the left and right above the wheels).
For locomotion, the robot uses two active wheels (seen at the front) and a

dummy castor (not visible in the picture).

Figure 4. Snapshot from the omni directional video camera on-board the
robot.

entiating the signals from the odometric sensors in the motors driving

each wheel of the robot. The robot was controlled by a PC via USB

connection in order to achieve maximum possible data transfer rates

when reading the robot’s sensors. The video during each recording

session was independently recorded on the video camera and during

post-processing it was time-corresponded with the robot’s data. This

setup allowed a 10Hz sampling rate in all data sources (gyro, mo-

tor position, video). Two sets of data were collected using the above

setup. The first (training set) was used to train the network weights

of the HD model and the second (the test set) was used to test the

model.

4 Training the Model

The duration of the training set was 873 seconds (14.55 minutes).

During this time the robot was programmed to continuously rotate

in a random direction with a constant rotational speed of approxi-

mately 35 degrees/second. In order to obtain the expected output of

the system at time tn (i.e. training pattern pn), initially, the direc-

tion of the robot (based on a world reference frame) was extracted

from the video data by finding the maximum correlation (along the

abscissa of the video image) between the video frame taken at tn and

the first captured video frame taken at t0. As the robot was only rotat-

ing on the spot during the experiments described here, this provided

a convenient way of establishing the world-based orientation of the

robot. After that, pn was created by translating a Gaussian function

(of standard deviation σ) so that it would be centred at the the robot’s

orientation at tn.

4th International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2011)
Berlin, Germany, December 9 2011

23

Training of the recurrent weights wRC was achieved using the

Hebbian learning rule:

δw
RC
ij = k

RC
r
HD
i r

HD
j (3)

where kRC is the learning rate. Training of the vestibular weights

was achieved using the following rule:

δw
VES
ijk = k

VES
r
HD
i r̄

HD
j r

VES
k (4)

where r̄HD is a historical trace value of rHD and is given by:

r̄
HD
j (t+ δt) = (1− η)rHD(t+ δt) + ηr̄

HD
j (t) (5)

A similar rule to the one given by equation 4 was also used in order

to train the kinesthetic weights wKIN
ijk .

Note that equation 4 (through the use of equation 5) considers both

current and past values of the state of the HD model. It is this feature

that gives rise to idiothetic weight profiles that bias the CANN attrac-

tor to move with the right speed and in the right direction according

to the idiothetic inputs. In equation 5, η is a parameter that dictates

the influence of the current and previous state of the network in the

trace rule (equation 4) and δt is the time delay between the two states

considered.

Table 1 lists the parameters of the HD model presented here. Re-

call that the θ parameters control the influence of the inputs to the HD

model. These parameters are not orthogonal to each other. In most

previous work, these parameters (or parameters with similar role)

have been obtained by trial-and-error. Here, θRC, θVIS, θVES and

θKIN were obtained using an evolutionary strategy that drew from

biological observations (see [11]). The parameters θRCϕ and θTMϕ

are explained in section 6.

Table 1. The parameter values used in the HD model presented.

τ 0.1s

δt 0.1s θRC 3.7

β 0.1 θVIS 19.6

kRC 0.01 θVES 0.0054

kVES 0.01 θKIN 0.0015

kKIN 0.01

η 0.9 θRCϕ 5.5

σ 20◦ θTMϕ 0.060

wINH 0.5

5 Testing the Core Model

Test data was collected for 102.9 seconds (1.715 minutes). During

this session the robot was programmed to continuously rotate on the

spot and in the same direction with a constant rotational speed of

approximately 35 degrees/second. The test data is shown in figure 5.

The same test data set was used for all test cases described in this

paper. However, without loss of integrity, the test data was manipu-

lated for each test case in order to present the model with different

input conditions. One or more of the following four manipulations

was applied for a specified duration during a test:

1. Visual input intensity was set to 0 in order to simulate darkness.

2. The visual cue was “frozen” to a particular vector (taken from a

particular instant in the actual data) in order to simulate a fixed

visual input.

100 200 300 400 500 600 700 800 900 1000
0

100

200

300

Robot Orientation

O
ri
e
n
ta

ti
o
n

(d
e
g
re

e
s
)

100 200 300 400 500 600 700 800 900 1000

10

20

30

40

Gyro Sensor Output

A
n
g
u
la

r
v
e
lo

c
it
y

(d
e
g
re

e
s
/s

)

100 200 300 400 500 600 700 800 900 1000
-30

-20

-10

0

10

20

Motor Angular Velocities

Time (seconds/10)

A
n
g
u
la

r
v
e
lo

c
it
y

(d
e
g
re

e
s
/s

)

Figure 5. The test data sampled at 10Hz. Plot 1: The true orientation of
the robot (extracted from the video sequence). Plot 2: The output of the gyro

sensor on the robot used to simulate the vestibular sense. One vestibular
sensor cell is fed with this signal and the other is fed with the inverted

version of this signal. Plot 3: The left and right wheel velocities of the robot
(grey and black lines respectively) that are used to simulate the kinesthetic
sense. The two signals provide the inputs to each of the kinesthetic sensor

cells respectively.

3. The gyro signal (vestibular input) was set to 0 to simulate no

vestibular input.

4. The wheel velocities (kinesthetic input) were set to 0 to simulate

no kinesthetic input.

The HD model was tested under a number of different input con-

ditions that were created by applying the above manipulations. The

test run presented in figure 6 summarises these input conditions.

For this test run the visual input was turned off for 45s < t < 90s
(see plot 3 of figure 6). Also, for 0s < t < 15s and 75s < t < 90s
the visual cue to the model was kept fixed. This can be seen in plot 2

of figure 6. The vestibular input was set to 0 for 0s < t < 15s and

t > 75s (plot 4 of figure 6) and the kinesthetic input was set to 0 for

0s < t < 15s, 30s < t < 45s and t > 60s (plot 5 of figure 6).

Plot 2 in figure 6 compares the actual head direction (obtained from

video as described earlier) and the model-predicted head direction.

In effect, this test run provides the system with seven conditions that

last 15 seconds each (except the last one which lasts for 13 seconds):

1. 0s < t < 15s: The lights are on and the robot is neither moving

under its own volition nor it is being moved by any external force.

2. 15s < t < 30s: The robot moves under its own volition (vestibu-

lar and kinesthetic input) while the lights are on.

3. 30s < t < 45s: The robot is being moved by an external force

(only vestibular input) while the lights are on.

4. 45s < t < 60s: The robot is rotating under its own volition

(vestibular and kinesthetic input) while the lights are off.

5. 60s < t < 75s: The robot is being moved by an external force

(only vestibular input) while the lights are off.

6. 75s < t < 90s: The robot is stationary while the lights are off.

7. t > 90s: The lights are on and the robot is stationary but the

environment is being moved about the robot.

While the lights are on for 0s < t < 45s the output of the HD

model follows the visual cue regardless of the state of the idiothetic

4th International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2011)
Berlin, Germany, December 9 2011

24

Model predicted output

N
o
d
e

100 200 300 400 500 600 700 800 900 1000

100

200

300

100 200 300 400 500 600 700 800 900 1000
0

200

True (as derived from video) and Model predicted head direction

D
ir
e
c
ti
o
n

(d
e
g
re

e
s
)

100 200 300 400 500 600 700 800 900 1000
0

0.5

1
Visual input (normalised intensity)

A
m

p
lit

u
d
e

100 200 300 400 500 600 700 800 900 1000
0

20

40

Vestibular input (gyro sensor output)

A
n
g
u
la

r
v
e
lo

c
it
y

(d
e
g
re

e
s
/s

)

100 200 300 400 500 600 700 800 900 1000
0

10

20

Kinesthetic input (right motor velocity)

Time (seconds/10)

W
h
e
e
l

v
e
lo

c
it
y

(d
e
g
re

e
s
/s

)

Figure 6. Testing the core model. Plot 1: The model output. This is a
surface plot viewed from the top. The black colour value is proportional to
the excitation of each HD cell in the CANN. Plot 2: The robot’s true head

direction (grey line) and the model-predicted head direction (black line) with
the absolute difference between them (wide black line). Note that the

model-predicted head direction is the crest of the surface in plot 1. Plot 3:

The normalised intensity of the visual input. When this is 0 the robot is in
the dark (no visual input). Plot 4: The vestibular input (gyro sensor signal).
Plot 5: The kinesthetic input (right motor velocity). Note that only the right

motor velocity is plotted for clarity.

inputs. When there is no visual input (lights off) for 45s < t < 90s
the system integrates the vestibular and kinesthetic inputs to keep

track of its direction. However, because these inputs are idiothetic

and there is no world-based reference to use in order to relate to

the true orientation of the robot the output of the system drifts away

from the true orientation of the robot. The drift is greater when only

the vestibular input is present (60s < t < 75s) than the case when

both vestibular and kinesthetic inputs corroborate (45s < t < 60s).
When no input is present (75s < t < 90s) the system maintains

its orientation (the CANN attractor is self sustained and stationary).

Since the above conditions succeed each other it can be seen that dur-

ing the last mentioned condition (i.e. for 75s < t < 90s) the robot

is constantly in error since the lights remained off from the previ-

ous condition and it has therefore not been allowed to “realise” that

it has drifted from the true orientation. This error is instantaneously

corrected when the lights come on at t = 90s.
For t > 90s, the core implementation of the HD system presented

thus far, causes the robot to “believe” that it is rotating when in fact it

is the environment that is being rotated around it. Experiments with

rats (see [3]) however show that under such a condition rats maintain

their orientation, in effect “realising” that the environment is being

moved around them. In order to address this problem, the model de-

scribed this far is extended as described in the sections that follow.

6 The Extended Model

Let angle χ be the orientation of the robot in a world reference frame

and angle ψ be the orientation of the robot with respect to its environ-

ment (i.e. the angle that the robot calculates from its visual input sig-

nal). In the test run above χ and ψ were the same except for t > 90s
when an offset between the two angles was introduced due to the en-

vironment having been rotated. According to biological observation

w1
TM3

wRC3CANN3

CW�TM

Cells

CCW�TM

Cells

w2
TM3

3

%
$

rate

+

-

Gating�network

Idiothetic sensor�cells

A

IVÿSB

�TM3 �TM3

Figure 7. The extension to the core model (shown in 2) of the HD system.
CANN

ϕ operates as an integrator of ϕ. The attractor (the position of which
represents angle ϕ) is shifted using two groups of turn-modulated cells, one
for clockwise shifts and another for counter-clockwise shifts (CW TM and

CCW TM respectively). The two groups of TM cells are driven respectively
by two signals (weighted by θTMϕ) that carry the rate of change of ψ in the

respective direction. The signals are produced by a gating network that is
only active (i.e. gate open) when the vestibular and kinesthetic sensor cells
are not firing. Block A takes the 360-component output of the attractor and
computes angle ϕ (signified by the node with the highest firing rate) so that
it can be subtracted from ψ. χ is then converted by block B into the visual

input IVIS (a 360-component vector) for the CANN containing the HD cells
as explained in section 4. The shaded blocks can all be realised by neural

networks.

(see [3]), for t > 90s in the example above, HD cells should main-

tain their excitation relative to χ when what actually happens above

is that the HD model maintains angle ψ as its reference.

In order to correct for this shift in the reference orientation the

core HD model needed to be extended so that, while there is no id-

iothetic input and the visual cue is moving, the difference between

χ and ψ is integrated into an angle that shall be called ϕ here. Of

course the robot has no access to χ directly since its allothetic cues

(visual input) relate to ψ but since the robot is not moving (no idio-

thetic inputs) during this input condition there is no change in χ and

therefore the difference between χ andψ is in fact the change inψ. In

this model ϕ is always subtracted from ψ (the angle extracted from

the visual input) thus effectively always maintaining an orientation

with reference to χ (the world-based reference frame).

The mechanism that is used here to achieve this can be thought of

as an integrator of angle ϕ that operates only when the condition no

idiothetic input and changing visual cue is met. This is achieved here

by another CANN (the integrator) the output of which is a represen-

tation of the angle ϕ. The position of the attractor in this CANN (that

we shall call CANNϕ) is changed by the rate of change of angle ψ

when the vestibular and kinesthetic sensor cells are not active. Figure

7 illustrates this mechanism. The reader is referred to the caption of

the figure for a detailed explanation.

Apart from the CANN which is the main feature of the diagram

in figure 7 the operations of the other network blocks (shown shaded

4th International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2011)
Berlin, Germany, December 9 2011

25

Model predicted output

N
o
d
e

100 200 300 400 500 600 700 800 900 1000

100

200

300

100 200 300 400 500 600 700 800 900 1000
0

200

True (as derived from video) and Model predicted head direction

D
ir
e
c
ti
o
n

(d
e
g
re

e
s
)

100 200 300 400 500 600 700 800 900 1000
0

1

2
Visual input (normalised intensity)

A
m

p
lit

u
d
e

100 200 300 400 500 600 700 800 900 1000
0

20

40

Vestibular input (gyro sensor output)

A
n
g
u
la

r
v
e
lo

c
it
y

(d
e
g
re

e
s
/s

)

100 200 300 400 500 600 700 800 900 1000
0

10

20

Kinesthetic input (right motor velocity)

Time (seconds/10)

W
h
e
e
l

v
e
lo

c
it
y

(d
e
g
re

e
s
/s

)

Figure 8. Testing the extended model. Plot 1: The model output
(excitation of HD cells). Plot 2: The robot’s head direction (grey line) and

the model-predicted head direction (black line). Plot 3: The normalised
intensity of the visual input. Plot 4: The vestibular input (gyro sensor

signal). Plot 5: The kinesthetic input (right motor velocity only).

in the figure) can also be easily realised with neural networks (for

example multi-layer perceptron networks and recurrent networks).

Detailed expansion of these blocks however is omitted here as it falls

out of the main scope of this paper.

This extension to the model introduces the two new parameters

θRCϕ and θTMϕ that describe the contribution of the relevant inputs

to the CANNϕ. The values of these parameters for the extended im-

plementation described here are given in table 1.

7 Testing the Extended Model

In order to test the extended model a new test run was created from

the test data set. During this test the visual cue was always on (lights

on) and rotating but both idiothetic inputs were made to alternate

every 20 seconds between 0 and their original value. In effect, during

this test run, conditions alternate between: (a) the robot rotating while

the environment is fixed and (b) the robot being stationary while the

environment is rotated. Figure 8 shows the response of the system

during this test run.

Note how the system now correctly reflects the biological obser-

vations made in [3] when the environment is rotated about the robot.

In other words, during this time the robot “believes” its orientation is

not changing with respect to the world reference frame, even though

the robot does not have direct access to this frame of reference.

8 Discussion and Conclusion

A biologically inspired model of the head direction system was pre-

sented and implemented on a small mobile robot. The model takes

three inputs (visual, vestibular and kinesthetic) that are among those

that most influence the biological HD system [20]. The model was

trained and tested using real data obtained from the robot.

The main contribution of the work presented here is a biologically

plausible mechanism that simulates the change in the preferred head

direction of HD cells when visual cues suggest rotation of the agent

when idiothetic cues do not. No other example has been found in the

literature that models this feature of the HD system.

At the present moment it is impossible to observe the real head

direction system of an animal in its entirety and therefore we can

only speculate about how the whole system works. Like the one pre-

sented here, all HD system models so far draw on behavioural ob-

servations of animals and in more recent years from microelectrode

signal recordings of a small number of HD cells. We fully realise that

the entire biological system is much more complex. However, the

model proposed here qualitatively replicates some of the biological

observations mentioned in the literature. It is by no means claimed

here that the presented model is anatomically accurate. This is not

the primary intention of the authors.

The work presented here contributes towards a model of biologi-

cally inspired robot navigation. Probabilistic methods for robot nav-

igation, that currently prevail in the literature (see [22] for a re-

view), leave quite a few fundamental problems unsolved. These in-

clude their dependency on accurate maps, their inability to deal with

change in the environment and their dependency on accurate sensors

(see [13]). Humans and animals on the other hand are able to deal

with these problems seamlessly. The long-term aim of this work is to

understand and then simulate this navigational ability of biological

organisms in artificial agents such as autonomous robots.

According to Trullier and colleagues (in [24]) biological naviga-

tion methods may not always produce the best, most mathematically

optimal solution to a navigation problem but they are fast, flexible

and adaptive. What is best and most mathematically optimal however

depends on the employer of a particular navigational skill. We know

little about even the simplest of organisms in nature and it could

therefore really be that for a particular organism, their navigation

strategy is the best in all respects. Modelling biological mechanisms

of navigation helps us understand better the remarkably complex

systems in nature. Besides the information value however, the un-

derstanding of how these mechanisms evolved, rather than just what

they do and how they do it, may lead us to more generalised princi-

ples of designing artificial navigation systems that might be the best

and most optimal for their intended application.

REFERENCES

[1] A. Arleo and W. Gerstner, ‘Spatial orientation in navigating agents:
Modeling head-direction cells’, Neurocomputing, 38-40(1-4), 1059–
1065, (2001).

[2] R. Biegler and R.G.M. Morris, ‘Landmark stability is a prerequisite for
spatial but not discrimination learning’, Nature, 361, 631–633, (Febru-
ary 1993).

[3] Hugh T. Blair and Patricia E. Sharp, ‘Visual and vestibular influences
on head-direction cells in the anterior thalamus of the rat’, Behavioral

Neuroscience, 110(4), 643–660, (1996).
[4] Recent Developments in Biologically Inspired Computing, eds., Lean-

dro N. de Castro and Fernando J. Von Zuben, Idea Group Publishing,
March 2005.

[5] Thomas Degris, Loı̈c Lachèze, Christian Boucheny, and Angelo Arleo,
‘A spiking neuron model of head-direction cells for robot orientation’,
in In Proceedings of the Eighth International Conference on the Sim-

ulation of Adaptive Behavior, from Animals to Animats, pp. 255–263.
MIT Press, (2004).

[6] Ariane S. Etienne, Roland Maurer, and Valérie Séguinot, ‘Path integra-
tion in mammals and its interaction with visual landmarks’, Journal of

Experimental Biology, 199, 201–209, (1996).
[7] Jeremy P. Goodridge, Paul A. Dudchenko, Kimberly A. Worboys, Ed-

ward J. Golob, and Jeffrey S. Taube, ‘Cue control and head direction
cells’, Behavioral Neuroscience, 112(4), 749–761, (1998).

[8] Jeremy P. Goodridge and David S. Touretzky, ‘Modeling attractor de-
formation in the rodent head-direction system’, Journal of Neurophysi-

ology, 83, 3402–3410, (2000).
[9] Torkel Hafting, Marianne Fyhn, Sturla Molden, May-Britt B. Moser,

4th International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2011)
Berlin, Germany, December 9 2011

26

and Edvard I. Moser, ‘Microstructure of a spatial map in the entorhinal
cortex’, Nature, 436(7052), 801–806, (August 2005).

[10] Theocharis Kyriacou, ‘An implementation of a biologically inspired
model of head direction cells on a robot’, in Towards Autonomous

RObotic Systems (TAROS) 2011, (2011).
[11] Theocharis Kyriacou, ‘Using an evolutionary algorithm to determine

the parameters of a biologically inspired model of head direction cells’,
Journal of Computational Neuroscience, 1–15, (2011).

[12] Bartlett W. Mel and Christof Koch, ‘Sigma-pi learning: on radial ba-
sis functions and cortical associative learning’, in Advances in neural

information processing systems 2, ed., David S. Touretzky, 474–481,
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, (1990).

[13] Michael Milford, Robot Navigation from Nature - Simultaneous Local-

isation, Mapping, and Path Planning based on Hippocampal Models,
volume 41 of Springer Tracts in Advanced Robotics, Springer, 2008.

[14] R. G. Morris, P. Garrud, J. N. Rawlins, and J. O’Keefe, ‘Place navi-
gation impaired in rats with hippocampal lesions’, Nature, 297(5868),
681–683, (June 1982).

[15] R. U. Muller, J. L. Kubie, and J. B. Ranck, ‘Spatial firing patterns
of hippocampal complex-spike cells in a fixed environment’, Neuro-

science, 7(7), 1935–1950, (1987).
[16] J. O’Keefe and J. Dostrovsky, ‘The hippocampus as a spatial map. pre-

liminary evidence from unit activity in the freely-moving rat’, Brain

Research, 34(1), 171–175, (November 1971).
[17] A.D. Redish, A.N. Elga, and D.S. Touretzky, ‘A coupled attractor model

of the rodent head direction system’, Network: Computation in Neural

Systems, 7(4), 671–685, (1996).
[18] W.E. Skaggs, J.J. Knierim, H.S. Kudrimoti, and B.L. McNaughton, ‘A

model of the neural basis of the rat’s sense of direction’, Advances in

Neural Information Processing Systems, 7, 173–80, (1995).
[19] S.M. Stringer, T.P. Trappenberg, E.T. Rolls, and I.E. de Araujo, ‘Self-

organizing continuous attractor networks and path integration: one-
dimensional models of head direction cells’, Network: Computation in

Neural Systems, 13(2), 217–242, (May 2002).
[20] J.S. Taube, ‘Head direction cells and the neurophysiological basis for a

sense of direction’, Progress Neurobiololy, 55(3), 225–256, (1998).
[21] J.S. Taube, R.U. Muller, and J.B. Ranck Jr., ‘Head-direction cells

recorded from the postsubiculum in freely moving rats. i. description
and quantitative analysis’, Neuroscience, 10(2), 420–435, (1990).

[22] Sebastian Thrun, Wolfram Burgard, and Dieter Fox, Probabilistic

robotics, Intelligent robotics and autonomous agents, MIT Press,
September 2005.

[23] E.C. Tolman, B.F. Ritchie, and D. Kalish, ‘Studies in spatial learning. i.
orientation and the short-cut’, Journal of Experimental Psychology, 36,
13–24, (1946).

[24] O. Trullier, S. Wiener, A. Berthoz, and J. Meyer, ‘Biologically-based
artificial navigation systems: Review and prospects’, Progress in Neu-

robiology, 51, 483–544, (1997).
[25] R. Wehner and R. Menzel, ‘Do insects have cognitive maps?’, Annual

Review of Neuroscience, 13, 403–414, (March 1990).
[26] Head direction cells and the neural mechanisms of spatial orientation,

eds., S. I. Wiener and J. S. Taube, MIT Press, 2005.
[27] P. Zeidman and J.A. Bullinaria, ‘Neural models of head-direction cells’,

in From Associations to Rules: Connectionist Models of Behavior and

Cognition, eds., R.M. French and E. Thomas, pp. 165–177, (2008).

4th International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2011)
Berlin, Germany, December 9 2011

27

4th International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2011)
Berlin, Germany, December 9 2011

28

Using CMA-ES with Local Models for Difficult
Optimisation Problems

Nils T Siebel1 and Sven Grünewald2

Abstract. Evolutionary algorithms are a popular tool to find good

solutions for complex optimisation problems. Self-tuning algorithms

like CMA-ES (“Covariance Matrix Adaptation Evolution Strategy”)

are particularly useful for problems that are high-dimensional, ill-

conditioned and/or non-separable. A problem with these methods, as

with evolutionary algorithms in general, is the computational time

needed to locate a solution in the search space. With large optimi-

sation problems, the necessity to evaluate the objective function at

a very large number of points poses a considerable obstacle. In this

article we examine when the use of a local model of the objective

function in CMA-ES can speed up the optimisation process.

1 INTRODUCTION

Given a function f : IRn → IR, the typical task for an optimisation

algorithm is to find a solution xmin to the problem

xmin ∈ argmin
x∈IRn

f(x), (1)

or at least some x⋆ with f(x⋆) ≈ f(xmin) for an xmin as above.

When there is no analytical solution available numerical optimisa-

tion algorithms can be used. These work by starting from a given (or

random) starting point x0 and iteratively searching for a solution by

evaluating candidate solutions x1, x2, . . . sampled from the search

space. For the types of problems considered here these evaluations

of the function f are computationally expensive which slows down

the optimisation process.

In this article we consider a method which uses a local model

(approximation) f̂ of the objective function f which is simpler and

hence, faster to evaluate than f itself. If f̂ approximates f sufficiently

well then it can be used to identify candidate solutions where the ac-

tual function f can then be evaluated. Such an f̂ is often called a

meta model of the function f .

The remainder of the article is organised as follows. Section 2

introduces the terminology and describes related work. The local

model used in our experiments is described in Section 3 and vali-

dated by experiments in Section 4. Section 5 concludes the article.

2 PRELIMINARIES AND RELATED WORK

2.1 Evolutionary Algorithms and CMA-ES

Evolutionary algorithms are ways of solving optimisation problems

that are inspired by Darwinian principles [4]. A set of candidate so-

lutions (“individuals”) is generated and maintained by the algorithm.

1 HTW University of Berlin, Germany, email: siebel@htw-berlin.de
2 University of Kiel, Germany

Over time (time steps from one generation to the next) this popula-

tion moves through the search space, looking for a good solution to

the problem.

In order to generate a new generation from the current one, an

evolutionary algorithm generates new individuals from the existing

ones. This process involves a random element, usually probability

distributions which model the way the population changes and moves

through the space. In order to keep the algorithm as general as possi-

ble (and not implicitly assume certain characteristics about the prob-

lem), evolution strategies change the parameters of the probability

distributions over time, adapting it to the given problem and struc-

ture of the search space.

While standard evolution strategies adapt these strategy param-

eters randomly (ibid.), Hansen and Ostermeier have presented a

method which uses derandomised self-adaptation [6]. Their method,

CMA-ES (“Covariance Matrix Adaptation Evolution Strategy”)

maintains an estimate of the covariance matrix of the search distri-

bution. This covariance matrix describes the pairwise dependencies

between the components of variables in the solution space. New indi-

viduals are created by sampling from the normal distribution spanned

by the main axes of the covariance matrix. The covariance matrix up-

dated regularly by CMA-ES converges to the inverse Hessian matrix

(up to a constant factor) (ibid.). Therefore CMA-ES can use a locally

valid 2nd order model of the structure of the search space without

requiring the knowledge or even existence of the objective function’s

derivative. CMA-ES uses an adaptive step size and analyses the evo-

lutionary path to avoid problems like premature convergence and is

known for fast convergence to good solutions even with multi-modal

and non-separable functions in high-dimensional spaces. It has also

been successfully applied by Igel to reinforcement learning of neural

network weights [7], which is known to be a difficult problem due to

the curse of dimensionality [2] and numerical ill-conditioning [11].

We have used CMA-ES in our neuro-evolutionary method EANT2

(“Evolutionary Acquisition of Neural Topologies Version 2”) [13]

and are now looking into ways to speed up the optimisation process

by using a local meta model of the objective function, which is very

slow to evaluate.

2.2 Locally Weighted Regression

Locally weighted regression is an approach for avoiding func-

tion evaluations by using already known function values from the

vicinity of the point to be evaluated [3, 1]. The main idea is to

use a model f̂(xi, β) for inter-/extrapolating given function values

{(xi, yi)}i=1,...,m so as to estimate the function value at a point q.

The structure of the model is constant, usually a polynomial of fixed

order. Its parameters β are fitted to known function values by min-

4th International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2011)
Berlin, Germany, December 9 2011

29

imising an error measure C(q).
The known data points can be weighted by applying a kernel func-

tion K : IR → [0, 1] in order to emphasise those points which are

close to the query point q. An additional smoothing parameter h can

be used to model the density of data around the point q. This gives

the following error measure:

C(q) =
m
∑

i=1

[

(

f̂(xi, β)− yi

)2

K

(

d(q, xi)

h

)]

(2)

where d(q, xi) is the distance between xi and the point q.

2.3 CMA-ES with Local Meta Models

The idea to use a (meta) model of the objective function in evolu-

tionary optimisation has been presented by Kern et al. [8]. In order

to achieve a speedy optimisation many evaluations of the objective

function are replaced by evaluations of the meta model and inter-

/extrapolated by locally weighted regression. The authors report a

significant speedup, e.g. a reduction from 5263 (objective) function

evaluations, abbreviated fevals, to 626 fevals with the widely used

non-separable double sum test function by Schwefel [12],

fSchwefel (x) =
n
∑

i=1

(

i
∑

j=1

xj

)2

(3)

and dimension n = 16.

3 DETAILS OF THE METHOD

Our analysis of the method presented in [8] extends their experi-

ments by looking at more difficult problems, in order to find out

when CMA-ES with a local meta model can be used. We analyse the

overall time (wall clock time) spent by the algorithm, in addition to

the number of function evaluations (“fevals”) and optimisation result

(best function value found).

3.1 The Model

We use the following quadratic model:

f̂ = β
T
(

x
2
1, . . . , x

2
n, x1x2, . . . , xn−1xn, x1, . . . , xn, 1

)T
(4)

which yields the model’s dimensionality,

Df̂ =
n (n+ 3)

2
+ 1 (5)

where n is the problem dimension.

3.2 The Kernel

The kernel used is biquadratic:

K(d) =

{
(

1− d2
)2

if d < 1
0 else

(6)

3.3 Bandwidth

The bandwidth h is determined dynamically for each query point q to

involve the k nearest neighbours of q among the known data points.

The optimum value has been empirically determined and set to

k = n (n+ 3) + 2. (7)

3.4 Test Functions

Our first test function is the double sum Schwefel function fSchwefel

from (3), which is continuous, convex and unimodal but creates dif-

ficulties for methods which rely on actual or estimated gradient di-

rections due to its inherent rotation.

The second test function is the unimodal, non-separable Rosen-

brock valley (“banana”) function [10],

fRosenbrock(x) = 100 ·

n−1
∑

i=1

(

(

x
2
i − xi+1

)2
+ (xi − 1)2

)

, (8)

which has its minimum inside a deep valley with the shape of a

parabola. Due to the non-linearity of the valley many optimisation

algorithms converge slowly because they keep changing the search

direction.

The third test function is the following heavily multi-modal func-

tion by Rastrigin [9]:

fRastrigin(x) = 10 ·

(

n−
n
∑

i=1

cos (2πxi)

)

+
n
∑

i=1

x
2
i , (9)

which is difficult to minimise due to its many local minima.

All three functions are plotted in two dimensions in Figure 1.

4 EXPERIMENTAL RESULTS

In our experiments we optimised each test function at least 5 times

for a given problem dimension. The problem dimensions examined

were n = 2, 5, 10, 15, 20, 25 and, for fSchwefel, also n = 30.

4.1 Results for fSchwefel

The results for the fSchwefel double sum function are given in Table 1.

As in [8] the advantage of CMA-ES with a local meta model is par-

ticularly pronounced for this test function. For the dimension n = 2
CMA-ES with a local meta model on average only needs 80 instead

of 513 fevals. With n = 15 the number can even be reduced from

5526 to 538. Our results support the results by Kern et al. and we

can see that for higher dimensions (we tested up to n = 30) the

same improvement can be achieved. With increasing dimensions the

fevals increases more slowly with CMA-ES with a local meta model

in comparison to the standard CMA-ES.

When considering the function values (see Figure 2, middle graph)

one can, however, see that CMA-ES with the local meta model does

not achieve the same quality of results. The best function value

found differs by several orders of magnitude, e.g. 1.14394e-08 vs.

3.62874e-15 for n = 20 (the optimum value is 0). This may be due

to a faster convergence, i.e. the stop criterion was true further away

from the true optimum.

Even though CMA-ES uses many less function evaluations when

using a local meta model the wall clock run time is actually larger

than without it. This can be seen again in the Table 1 where run times

in seconds are given. For dimensions n = 2 and n = 5 both meth-

ods are approximately the same in speed. However, for dimensions

n > 5 CMA-ES with the local meta model is significantly slower

than CMA-ES. This difference becomes more pronounced with in-

creasing dimension; for n = 30 CMA-ES converges in 18 seconds

while CMA-ES with local meta model takes more than 3 hours. This

trend for large dimensions becomes even more clear in Figure 2,

lower graph, where the wall clock time is plotted as a function of

the dimensionality.

4th International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2011)
Berlin, Germany, December 9 2011

30

CMA-ES with local meta model CMA-ES
n virt. fevals fevals Function value Run Time fevals Function value Run Time

2 389 80 9.08902e-10 1.505 513 1.29806e-16 1.623
5 1117 174 6.10398e-10 2.819 1346 9.89092e-16 2.585
10 2592 342 2.97969e-09 15.471 3066 1.54028e-15 3.664
15 4520 538 6.83864e-09 123.334 5526 2.33629e-15 5.737
20 6787 826 1.14394e-08 812.699 8027 3.62874e-15 8.518
25 9889 1138 3.841e-08 3787.277 11535 4.35024e-15 12.096
30 13010 1466 3.93902e-08 12326.788 15245 3.73597e-15 17.340

Table 1. Average results for 5 runs each, optimisation of fSchwefel (run time given in seconds)

FSchwefel(x,y)

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2
x1 -2

-1.5
-1

-0.5
 0

 0.5
 1

 1.5
 2

x2

 0

 5

 10

 15

 20

 25

 30

 35

 0

 5

 10

 15

 20

 25

 30

 35

(a) fSchwefel

FRosenbrock(x,y)

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2
x1 -2

-1.5
-1

-0.5
 0

 0.5
 1

 1.5
 2

x2

 0

 500

 1000

 1500

 2000

 2500

 0

 500

 1000

 1500

 2000

 2500

(b) fRosenbrock

FRastrigin(x,y)

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2
x1 -2

-1.5
-1

-0.5
 0

 0.5
 1

 1.5
 2

x2

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

(c) fRastrigin

Figure 1. Test functions plotted in 2 dimensions

The reason for this is the computational effort to build the local

meta model (determine its parameters) where a lot of computational

time is spent.

4.2 Results for fRosenbrock

With the slightly more difficult fRosenbrock function once more CMA-

ES uses many fewer fevals when using the local meta model. This can

be seen in the Table 2 and the graphs in Figure 3. When considering

the function values (middle graph in Figure 3) one can see a consid-

erable variation in the results. This is valid for both approaches. The

reason for this are cases in which the optimisers converge to a wrong

value of around 3.9. Apart from this both methods show the same

quality of results.

With regards to the wall clock run time the effects seen with

fSchwefel are even more pronounced, with CMA-ES being much faster

without the local meta model. Unlike with fSchwefel CMA-ES with the

local meta model is already slower at dimension n = 2. For n = 25
the run time is around 18 hours, but only 22 seconds with the original

CMA-ES.

4.3 Results for fRastrigin

When optimising this most difficult function of the three one can see

that the CMA-ES with the local meta model never uses less fevals

than CMA-ES, see Table 3. This is in agreement with the results

reported by Kern et al. [8], even if they did not use the standard pop-

ulation sizes but instead larger values, taken from [5]. When looking

at the graphs in Figure 4 one can see a particularly wide spread in the

results around n = 15 when using the local model. In some cases

more fevals are needed here than with n = 25, which points to sig-

nificant convergence problems. For larger dimensions both variants

of CMA-ES exhibit the same results for fevals.

When looking at the function values both variants show a large

variation in their results. At n ≤ 10 CMA-ES with a local meta

model is slightly better than CMA-ES but with larger dimensions

this is quite different. However, even here the difference between the

two is smaller than the variance of the results so that we cannot easily

judge them.

Considering the run time again the original CMA-ES is the clear

winner. Due to the convergence problems around dimension n = 15
CMA-ES with the local meta model sometimes takes more time than

with n = 20. In one run it took 73153 virtual fevals (i.e. calls to the

evaluation function, which may give the meta model’s value or that

of the objective function) while the largest value for n = 20 was

16899 virtual fevals. Considering the number of virtual fevals, still

with the local meta model, on average 33744 virtual fevals at n = 15
and 20262 virtual fevals at n = 25, but still taking three times as

much time, it is very clear that the run time is more dependent on the

dimension than on the number of virtual fevals.

4th International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2011)
Berlin, Germany, December 9 2011

31

CMA-ES with local meta model CMA-ES
n virt. fevals fevals Function value Run Time fevals Function value Run Time

2 998 253 2.06051e-10 2.849 760 1.01779e-09 0.959
5 3139 771 1.57234 7.339 2653 1.57672e-09 1.721
10 8780 2313 2.39195 136.859 7337 1.59463 3.786
12 14443 4076 4.20586e-09 325.753 9949 6.02164e-09 4.465
15 22494 6197 1.59465 1290.499 13642 6.89638e-09 6.205
17 29160 8063 3.64668e-08 3008.373 16383 0.797325 7.968
20 41751 11658 0.797325 10088.182 20932 7.54821e-09 11.493
25 79277 24036 1.07025e-07 63827.514 33333 6.12533e-09 21.981

Table 2. Average results for 5 runs each, optimisation of fRosenbrock (run time given in seconds)

CMA-ES with local meta model CMA-ES
n virt. fevals fevals Function value Run Time fevals Function value Run Time

2 684 172 2.58689 2.070 724 2.18891 2.212
5 4619 1612 9.15361 15.015 1742 8.35764 3.133
10 13494 6201 16.5163 270.313 3592 17.9092 4.400
15 33744 19691 39.7982 3996.487 5610 22.0881 5.538
20 15258 6024 35.4868 2945.690 6098 30.4457 6.191
25 20262 8562 61.4883 11916.86 7315 50.7428 7.023

Table 3. Average results for 5 runs each, optimisation of fRastrigin (run time given in seconds)

5 CONCLUSIONS

We have considered a variant of CMA-ES which uses a local meta

model to reduce the number of function evaluations in an evolution-

ary algorithm to optimise a function. From our observations and

comparisons with the original CMA-ES it became clear that this

model can indeed reduce the number of function evaluations. How-

ever, the complexity of the model causes a dramatic increase of run

time for medium to large dimensions (n > 5) of the search space.

With the test function fSchwefel the variant with the local meta

model has shown the best potential for an improvement over the orig-

inal variant. However, the resulting best function values found by the

optimiser were not as good as the ones found with CMA-ES. For the

more complex test functions fRosenbrock and fRastrigin not even a reduc-

tion in the number of function evaluations could be achieved.

In conclusion, the use of a local meta model does look like a vi-

able way to avoid expensive function evaluations for some problems.

However, until a different meta model—or a significantly faster way

to determine its parameters—is found, the original version of CMA-

ES outperforms this new variant especially for large dimensions of

the problem space.

ACKNOWLEDGMENTS

The program code used for our experiments is based on the origi-

nal CMA-ES and LMM-CMA-ES code which has been provided by

their authors, Nikolaus Hansen and Stefan Kern. We are grateful for

their generosity.

REFERENCES

[1] Christopher G Atkeson, Andrew W Moore, and Stefan Schaal, ‘Lo-
cally weighted learning’, Artificial Intelligence Review, 11(1), 11–73,
(February 1997).

[2] Richard Ernest Bellman, Adaptive Control Processes, Princeton Uni-
versity Press, Princeton, USA, 1961.

[3] William S Cleveland, ‘Robust locally weighted regression and smooth-
ing scatterplots’, Journal of the American Statistical Association,
74(368), 829–836, (1979).

[4] Ágoston E Eiben and James E Smith, Introduction to Evolutionary

Computing, Springer Verlag, Berlin, Germany, 2003.

[5] Nikolaus Hansen and Stefan Kern, ‘Evaluating the CMA evolution
strategy on multimodal test functions’, in Proceedings of the Eighth

International Conference on Parallel Problem Solving from Nature

(PPSN VIII), pp. 282–291, Birmingham, UK, (September 2004).
[6] Nikolaus Hansen and Andreas Ostermeier, ‘Completely derandom-

ized self-adaptation in evolution strategies’, Evolutionary Computation,
9(2), 159–195, (2001).

[7] Christian Igel, ‘Neuroevolution for reinforcement learning using evolu-
tion strategies’, in Proceedings of the IEEE Congress on Evolutionary

Computation (CEC 2003), 2588–2595, IEEE Press, (2003).
[8] Stefan Kern, Nikolaus Hansen, and Petros Koumoutsakos, ‘Local meta-

models for optimization using evolution strategies’, in Proceedings of

the Ninth International Conference on Parallel Problem Solving from

Nature (PPSN IX), pp. 282–291, Birmingham, UK, (September 2006).
[9] Leonard Andreevich Rastrigin, Extremal Control Systems, volume 3

of Theoretical Foundations of Engineering Cybernetics Series, Nauka,
Moscow, Russia, 1974. (in Russian).

[10] Howard H Rosenbrock, ‘An automatic method for finding the greatest
or least value of a function’, Computer Journal, 3(3), 175–184, (March
1960).

[11] Warren S Sarle. Ill-conditioning in neural networks. Web-
site, September 1999. ftp://ftp.sas.com/pub/neural/

illcond/illcond.html.
[12] Hans-Paul Schwefel, Evolution and Optimum Seeking, John Wiley &

Sons, New York, USA, 1995.
[13] Nils T Siebel and Gerald Sommer, ‘Evolutionary reinforcement learn-

ing of artificial neural networks’, International Journal of Hybrid Intel-
ligent Systems, 4(3), 171–183, (October 2007). ISSN 1448-5869.

4th International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2011)
Berlin, Germany, December 9 2011

32

0 10 20 30
Dimension

5000

10000

15000

20000

25000

30000

F
u
n
k
ti

o
n
ev

al
u
at

io
n
en

CMAES
LMM-CMAES

Function Evaluations F-Schwefel

0 10 20 30
Dimension

1e-18

1e-15

1e-12

1e-09

1e-06

F
u

n
ct

io
n

 V
al

u
e

CMAES
LMM-CMAES

Function Value F-Schwefel

0 10 20 30 40
Dimension

1

10

100

1000

10000

T
im

e
in

 S
ec

o
n

d
s

CMAES
LMM-CMAES

Run Time F-Schwefel

Figure 2. fevals, resulting function value and run time (logarithmic scale)

for fSchwefel, CMA-ES and CMA-ES with local meta model (“LMM-CMA-

ES”)

0 5 10 15 20 25
Dimension

0

10000

20000

30000

40000

50000

F
u

n
ct

io
n

 E
v

al
u

at
io

n
s

CMAES
LMM-CMAES

Function Evaluations F-Rosenbrock

0 5 10 15 20 25
Dimension

1e-09

1e-06

0,001

1
F

u
n

ct
io

n
 V

al
u

e

CMAES
LMM-CMAES

Function Value F-Rosenbrock

0 5 10 15 20 25
Dimension

1

100

10000

T
im

e
in

 S
ec

o
n

d
s

CMAES
LMM-CMAES

Run Time F-Rosenbrock

Figure 3. fevals, resulting function value and run time (logarithmic scale)

for the fRosenbrock test function, CMA-ES and CMA-ES with local meta

model (“LMM-CMA-ES”)

4th International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2011)
Berlin, Germany, December 9 2011

33

0 10 20
Dimension

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

F
u

n
ct

io
n

 E
v

al
u

at
io

n
s

CMAES
LMM-CMAES

Function Evaluations F-Rastrigin

0 10 20
Dimension

0

10

20

30

40

50

60

70

80

F
u

n
ct

io
n

 V
al

u
e

CMAES
LMM-CMAES

Function Value F-Rastrigin

0 10 20
Dimension

1

10

100

1000

10000

1e+05

T
im

e
in

 S
ec

o
n

d
s

CMAES
LMM-CMAES

Run Time F-Rastrigin

Figure 4. fevals, resulting function value and run time (logarithmic scale)

for the fRastrigin test function, CMA-ES and CMA-ES with local meta model

(“LMM-CMA-ES”)

4th International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2011)
Berlin, Germany, December 9 2011

34

Evolving Augmented Neural Networks in Compressed
Parameter Space

Yohannes Kassahun 1

Abstract. In this paper we present preliminary results on evolving

augmented neural networks in compressed parameter space. An aug-

mented neural network is a cascade of αβ filters and a feed-forward

multilayer perceptron. The parameters of the augmented neural net-

work are represented using a weighted sum of orthogonal functions.

We show that we need to optimize fewer parameters (the weights of

the orthogonal functions) than the number of parameters in the aug-

mented neural networks, and thereby accelerating the evolutionary

process. We tested the concept on single and double pole balancing

experiments, and found solutions faster than the reported speed in the

literature at which solutions are found.

1 Introduction

In robotics and many other research fields, the learning task we want

to solve is most of the time noisy (noisy sensors and actuators) and

partially-observable in addition to being complex (high dimensional

state and action spaces). Partially-observable problems have been

a challenging domain for machine-learning algorithms. The funda-

mental reason for this is that such problems place limits on an agent’s

ability to fully perceive the states of the environment, and in doing

so, limit the information upon which an agent can base its decisions.

Neuroevolutionary methods have delivered promising results in re-

cent years as methods of solving such learning tasks. In the past,

we proposed a solution, where we tried to simplify the topology of

the evolved neural network, and as a consequence, reduce the time

required to find a solution [11]. The approach exploits the use of a

Kalman filter as an input layer for the neural network to be evolved.

The Kalman filter inherently provides the system with memory (as

recurrent connections would) to estimate and thus recover the un-

observed missing state variables. From the viewpoint of the neural

network to be evolved (whose inputs are the outputs of the Kalman

filter layer), the state information has been augmented and is noise-

free. Clearly, this additional information provided to the system per-

mits a simpler neural network solution, thus significantly reducing

the time required to find a solution.

Complex tasks require correspondingly complex solutions with

many parameters to evolve. This again requires long training time.

In this paper, we combine the approach proposed by Koutntik et al.

[9] with the augmented neural network to reduce the training time.

The paper is organized as follows. First we present the augmented

neural network and then we discuss the experiments and results ob-

tained.

1 Robotics Group, University of Bremen, Robert-Hooke-Str. 5, D-28359,
Bremen, Germany, email: kassahun@informatik.uni-bremen.d

2 Augmented Neural Network with Kalman Filter
(ANKF)

The augmented neural network with Kalman Filter (ANKF) to be

evolved is made up of a neural network and a predictor that can

estimate the next state based on the current partially-observable

state (which is possibly corrupted by noise). The predictor we

use is composed of n Kalman filters (αβ filters, see Section 2.1)

{KF1,KF2, . . . ,KFn} one for each of the n sensory readings, as

shown in Figure 1. The outputs of these Kalman filters are connected

to a feed-forward neural network NN , whose outputs control the

plant. A Kalman filter KFi is used to estimate the sensor value x̂i

and the missing value ˆ̇xi from the measured (observed) value zi,
where i ∈ [1, n] and n is the number of observable state variables.

The quantity uj , where j ∈ [1,m], represents a control signal that is

(a) (b)

Figure 1. Two ways of using the augmented neural network: (a) The
Kalman filterKFi is used to estimate the sensor value x̂i from the measured
(observed) value zi in the case of complete state variables. (b) The Kalman

filter is used to estimate the sensor value x̂i and the missing value ˆ̇xi from
the measured (observed) value zi in the case of incomplete state variables.
The quantity uj represents the control signal that is sent to the plant to be
controlled.NN is a feed-forward neural network representing a policy π.

used to control a plant. The use of Kalman filters provides memory

to the system and as a result enables the system to recover missing

variables. Because of this, it is not necessary for the neural network

to have a recurrent connection, and the use of a feed-forward neu-

ral network for the policy π to be learned is sufficient. The whole

controller is a non-linear function given by

uj = f(w1, . . . , wk, γ1, . . . , γn; z1, . . . , zn), (1)

where uj (j ∈ [1,m]) is one of the outputs of the feed-forward

neural network, w1, . . . , wk are the weights of the neural network,

γ1, . . . , γn are the tracking indices (see Section 2.1) of the αβ filters

realizing KF1, . . .KFn, and z1, . . . , zn are the measured values of

4th International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2011)
Berlin, Germany, December 9 2011

35

input sensors. The index k is greater than or equal to n (k ≥ n) in
the case of complete state variables, and it is greater than or equal

to 2n (k ≥ 2n) in the case of incomplete state variables2. Table 1

summarizes the usage of the augmented neural network for different

task environments.

2.1 The αβ Filter

A Kalman filterKFi in Figure 1 is realized using an αβ filter, which

is a particular case of the general Kalman filter where the velocity is

assumed to be constant. The filter is usually used in tracking applica-

tions. The neural network equivalent of the filter is shown in Figure

Figure 2. An αβ filter for a single input zi. The activation function g is
the identity function, and the recurrent connections have a unit delay.

2. As can be seen in the figure, all the weights of the filter have a

magnitude of 1 except for α, β and T , where T is th sampling pe-

riod. The optimal values for α and β are derived by Kalata [10] for

assumed variance of both measurement and process noises (σv and

σw) and are given by α = 1 − r2 and β = 2(1 − r)2 respectively,

where r =
4+γ−

√
8γ+γ2

4
and γ = T2σw

σv
. The term γ is referred

to as a tracking index. Since the parameters α and β depend only on

γ, an optimization algorithm needs only to find a single parameter γ
per filter that results in the desired filter performance. An extension

of the αβ filter is the αβγ filter [4], which is based on a constant

acceleration model and is better suited for the tracking of complex

signals. Like the αβ filter, an optimization algorithm needs only to

find a single tracking index γ per filter to get the desired filter perfor-

mance. This enables one filter to be easily exchanged with the other.

2.2 Evolving Parameters of Augmented Neural
Network in Compressed Parameter Space

In this section we assume that the feed-forward neural network of

the augmented neural network has no hidden layer, and thus we can

assume that we have a vector of parameters to optimize. The number

of parameters to optimize in uncompressed parameter space is given

by 3n for incomplete state variables, where n is the number of inputs

to the augmented neural network. Note that the parameters of the

2 By incomplete state variables we mean a set of state variables whose first
order derivative with respect to time are missing.

αβ filter are optimized simultaneously with the weights of the feed-

forward network. The feed-forward network used in this paper has

only one output neuron with linear activation function and the output

weight is not optimized.

In order to speed-up the neuroevolutionary process, we approxi-

mate wk using

wk = a0φ0(tk) + a1φ1(tk) + a2φ2(tk) + . . .+ aMφM (tk), (2)

where φ0(tk), φ1(tk), φ2(tk), . . . , φM (tk) form an orthogonal set

of basis functions, tk ∈ [0, 1] is a parameterization variable and

M < 3n. The parametrization parameter tk = 0 corresponds to

the first parameter in the uncompressed parameter space, and tk = 1
corresponds to the last parameter in uncompressed parameter space.

For example, the set {1, cos(πt); cos(2πt), . . . , cos(Mπt)} forms

an orthogonal set of basis functions over the interval [−1, 1]. In the

compressed space, we evolve the parameters {a0, a1, . . . , aM}.

2.3 CMA-ES

CMA-ES [7] is used to evolve the parameters of the augmented neu-

ral network in both uncompressed and compressed parameter space.

CMA-ES is an advanced form of evolution strategy which can per-

form efficient optimization even for small population sizes. Each in-

dividual is represented by an n−dimensional real valued solution

vector. The solutions are altered by recombination and mutation. Mu-

tation is realized by adding a normally distributed random vector

with zero mean, where the covariance matrix of this distribution itself

is adapted during evolution to improve the search strategy. CMA-ES

uses important concepts like derandomization and cumulation. De-

randomization is a deterministic way of altering the mutation distri-

bution such that the probability of reproducing steps in the search

space that lead to better individuals is increased. A sigma value rep-

resents the standard deviation of the mutation distribution. The extent

to which an evolution has converged is indicated by this sigma value

(smaller values indicate greater convergence). Moreover, the algo-

rithm detects correlations between object variables (i. e. variables in

the vector to be optimized), and is invariant under orthogonal trans-

formations of the search space. Correlations between object variables

are detected by analyzing the search path of a population over sev-

eral past generations. These correlations are stored in the covariance

matrix and guide the future search path in a promising direction. This

principle is known as cumulation.

3 Description of Experiments and Results

In this section, we describe the experimental setup, summary of re-

sults obtained using αβ filter in uncompressed parameter space, and

results obtained using αβ filter in compressed parameter space

3.1 The Double Pole Balancing Problem Without
Velocities Benchmark

The pole balancing system has one or more poles hinged to a wheeled

cart on a finite length track. The movement of the cart and the poles

are constrained within a 2-dimensional plane. The objective is to bal-

ance the poles indefinitely by applying a force to the cart at regular

time intervals, such that the cart stays within the track boundaries.

An attempt to balance the poles fails if either (1) the angle from ver-

tical of any pole exceeds a certain threshold, or (2) the cart leaves the

track boundaries.

4th International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2011)
Berlin, Germany, December 9 2011

36

Noise-free environment Noisy environment

Complete state variables Completely observable domain.
Use the setup shown in Figure 1
(a).

Partially observable domain
due to noise. Use the setup
shown in Figure 1 (a).

Incomplete state variables Partially observable domain due to
missing state variables. Use the
setup shown in Figure 1 (b).

Partially observable domain
due to noise and missing state
variables. Use the setup shown
in Figure 1 (b).

Table 1. Usage of the augmented neural network (ANKF) for different task environments.

Center

Figure 3. The double pole balancing problem. The poles must be balanced
simultaneously by applying a continuous force F to the cart. The parameters
x, θ1 and θ2 are the offset of the cart from the center of the track, and the

angles from the vertical of the long and short pole, respectively.

In the double pole balancing without velocities benchmark, the

controller observes only x, θ1, and θ2, but not ẋ, θ̇1, and θ̇2. A fit-

ness function introduced by Gruau et al. is used in connection with

this benchmark [6]. The fitness function is the weighted sum of two

separate fitness measurements f = 0.1f1 + 0.9f2 taken over 1000

timesteps.

f1 = t/1000

f2 =











0 if t < 100

0.75
∑

t

i=t−100
(|xi|+|ẋi|+|θ̇1,i|+|θ̇2,i|)

otherwise,

(3)

where t is the number of time steps the pole is balanced starting from

a fixed initial position. In the initial position, all states are set to zero

except θ1 = 4.5◦. The angle of the poles from the vertical must be in

the range [−36◦, 36◦]. The defined fitness function favors controllers
that can keep the poles near the equilibrium point and minimize the

amount of oscillation. The first fitness measure f1 rewards successful
balancing, while the second measure f2 penalizes oscillations. The

evolution of the neural controllers is stopped when a champion of

a generation passes two tests. First, it has to balance the poles for

105 timesteps starting from the 4.5◦ initialization. Second, it has to

balance the poles for 1000 steps starting from at least 200 out of 625

different initial starting states. Each start state is chosen by giving

each state variable (x, ẋ, θ1, θ̇1, θ2, θ̇2) one of the values 0.05, 0.25,
0.5, 0.75, 0.95,0, 0, scaled to the range of each input variable. The

ranges of the input variables are ±2.16 m for x, ±1.35 m/s for ẋ,
±3.6◦ for θ1, and ±8.6◦ for θ̇1. The number of successful balances

is a measure of the generalization performance of the best solution.

The fitness function f is not directly proportional to the perfor-

mance of an individual in the two tests. Therefore, at the end of a

given generation, the controller with the highest fitness is not nec-

essarily the controller which performs better on the two tests. It is

possible that there could be another controller which was assigned

a lower fitness, but has better performance on the two tests. This

forces neuroevolutionary methods to be more explorative, and there-

fore results in a larger number of evaluations needed to solve the

benchmark.

3.2 Results Obtained in Uncompressed Parameter
Space.

The augmented neural network has been tested on the double pole

balancing without velocities benchmark, and has achieved signifi-

cantly better results on this benchmark than the published results of

other algorithms to date3. Table 2 shows the best result obtained by

the augmented neural network along with the best results from the

literature.

Table 2. Results for the double pole-balancing benchmark in
uncompressed parameter space using Gruau’s fitness measure. Average over

50 independent evolutions

Without velocities

Method Evaluations Generalization

CE[5] 840,000 300
SANE [12] 451,612 -
CNE [14] 87,623 -
ESP [3] 26,342 -
AGE [1] 25,065 317

EANT [11] 15,762 262
NEAT [13] 6,929 -
CoSyNE [2] 3,416 -

CMA-NeuroES [8] 1,141 -
Augmented neural network [11] 482 455

3.3 Results Obtained in Compressed Parameter
Space

Table 3 shows the performance of learning in compressed parameter

space for both single and double pole balancing experiments without

velocity information. For this experiment, evolution of augmented

neural network in compressed parameter space outperforms signifi-

cantly the evolution of recurrent neural network in compressed pa-

rameter space. The increase in performance is due to the simplifica-

tion of neural networks through αβ filters.

3 All results for the augmented neural network in this paper can be reproduced
using the software that can be downloaded at http://sourceforge.
net/projects/eant-project/.

4th International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2011)
Berlin, Germany, December 9 2011

37

Table 3. Results for the single and double pole-balancing benchmark in
compressed parameter space using Gruau’s fitness measure. Average over 50

independent evolutions. DOF stands for discrete orthogonal functions.

Task Method Parameters Evaluations

1 pole non-markov CoSyNE + DCT [9] 4 151
1 pole non-markov ANKF + DOF 3 12

2 poles non-markov CoSyNE + DCT [9] 5 3421
2 poles non-markov ANKF + DOF 5 480

4 Conclusion

We have shown that by evolving the parameters of the augmented

neural network in a compressed space, it is possible to accelerate neu-

roevolution for partially observable domains. The results presented

in this paper are preliminary, and the method has to be tested on

more complex problems to assess the feasibility of evolving aug-

mented neural network for complex problems in compressed param-

eter space.

REFERENCES

[1] P. Dürr, C. Mattiussi, and D. Floreano. Neuroevolution with analog
genetic encoding. In Proceedings of the 9th Conference on Parallel

Problem Solving from Nature (PPSN IX), pages 671–680, 2006.
[2] F. Gomez, J. Schmidhuber, and R. Miikkulainen. Accelerated neural

evolution through cooperatively coevolved synapses. Journal of Ma-

chine Learning Research, 9:937–965, 2008.
[3] F. J. Gomez and R. Miikkulainen. Incremental evolution of complex

general behavior. Adaptive Behavior, 5:317–342, 1997.
[4] J. E. Gray and W. Murray. A derivation of an analytic expression for

the tracking index for alpha-beta-gamma filter. IEEE Transactions on

Aerospace and Electronic Systems, 29(3):1064–1065, 1993.
[5] F. Gruau. Neural Network Synthesis Using Cellular Encoding and the

Genetic Algorithm. PhD thesis, Ecole Normale Superieure de Lyon,
Laboratoire de l’Informatique du Parallelisme, France, January 1994.

[6] F. Gruau, D. Whitley, and L. Pyeatt. A comparison between cellular
encoding and direct encoding for genetic neural networks. In J. R.
Koza, D. E. Goldberg, D. B. Fogel, and R. L. Riolo, editors, Genetic
Programming: Proceedings of the First Annual Conference, pages 81–
89, Standford University, CA, USA, 1996. MIT Press.

[7] N. Hansen and A. Ostermeier. Completely derandomized self-
adaptation in evolution strategies. Evolutionary Computation,
9(2):159–195, 2001.

[8] V. Heidrich-Meisner and C. Igel. Neuroevolution strategies for
episodic reinforcement learning. Journal of Algorithms, 2009.
doi:10.1016/j.jalgor.2009.04.002.

[9] J. Koutntik, F. Gomez, and J. Schmidhuber. Evolving neural networks
in compressed weight space. In Proceedings of Genetic and Evolution-
ary Computation Conference GECCO, pages 619–626, 2010.

[10] Paul R. Kalata. Alpha-beta target tracking systems: A survey. In Amer-
ican Control Conference, pages 832–836, 1992.

[11] Y. Kassahun, J. de Gea, M. Edgington, J. H. Metzen, and F. Kirch-
ner. Accelerating neuroevolutionary methods using a Kalman filter. In
Proceedings of the 10th Genetic and Evolutionary Computation Con-

ference (GECCO-2008), pages 1397–1404, 2008.
[12] D. Moriarty and R. Miikkulainen. Efficient reinforcement learning

through symbiotic evolution. Machine Learning, 22:11–33, 1996.
[13] K. O. Stanley. Efficient Evolution of Neural Networks through Com-

plexification. PhD thesis, Artificial Intelligence Laboratory. The Uni-
versity of Texas at Austin., Austin, USA, August 2004.

[14] A. Wieland. Evolving controls for unstable systems. In Proceedings

of the International Joint Conference on Neural Networks, pages 667–
673, 1991.

4th International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2011)
Berlin, Germany, December 9 2011

38

4th International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2011)
Berlin, Germany, December 9 2011

39

4th International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2011)
Berlin, Germany, December 9 2011

40

