2009 IEEE/RS] International Conference on Intelligent Robots and Systems (IROS 2009)

Proceedings of the

2" International Workshop on
Evolutionary and Reinforcement Learning
for Autonomous Robot Systems
(ERLARS 2009)

Thursday, October 15 2009
St. Louis, Missouri, U.S.A.

Nils T Siebel and Josef Pauli

http://www.erlars.org/

ii

Table of Contents

A Message fromthe Chairs......... p. v
Organisation of the ERLARS 2009 Workshop i iiiiiinena.. p. vii
Combining Central Pattern Generators with the Electromagnetism-like Algorithm

for Head Motion Stabilization during Quadruped Robot Locomotion

Cristina P Santos, Miguel Oliveira, Vitor Matos, Ana Maria A C Rocha and Lino Costa p. 1

Combination of Reinforcement Learning and Neural Networks
Anastasia Noglik and Josef Pauli i i p. 9

Using Joint Probability Densities for Simultaneous Learning of Forward and
Inverse Models

Mark Edgington, Yohannes Kassahun and Frank Kirchner p. 19

Compiling Neural Networks for Fast Neuro-Evolution
Nils T Siebel, Andreas Jordt and Gerald Sommer iiiiiiiineennnn.. p. 23

Path Planning for a Mobile Robot Using Self Tuning Fuzzy Logic Controller
Iraj Hassanzadeh and Sevil M Sadigh i, p. 31

iii

v

A Message from the Chairs

Welcome to the 2™ International Workshop on Evolutionary and Reinforcement Learning for
Autonomous Robot Systems, ERLARS 2009, held in conjunction with the IROS 2009 conference
in St. Louis, Missouri, USA on October 15 2009.

The ERLARS workshop is concerned with research on efficient algorithms for evolutionary and
reinforcement learning methods to make them more suitable for autonomous robot systems.
The long term goal is to develop methods that enable robot systems to learn completely, dir-
ectly and continuously through interaction with the environment. In order to achieve this,
methods are examined that can make the search for suitable robot control strategies more
feasible for situations in which only few measurements about the environment can be obtained.

The articles that you will find in these proceedings are steps along this way. We hope that they
can serve as a useful set of ideas and methods to achieve the long term research goal.

We would like to thank the program committee members who provided very good reviews in a
short period of time. We are also especially indebted to the authors of the articles sent to this
workshop for providing the material to make us think and discuss.

It has been a great pleasure organising this event and we are happy to be supported by such a
strong team of researchers. We sincerely hope that you enjoy the workshop and we look for-
ward, with your help, to continue building a strong community around this event in the future.

Nils T Siebel and Josef Pauli, Chairs, ERLARS 2009 Workshop.

vi

Organisation of the ERLARS 2009 Workshop

Workshop Chairs

Nils T Siebel Josef Pauli

Cognitive Systems Group Intelligent Systems Group
Institute of Computer Science Department of Computer Science
Christian-Albrechts-University of Kiel University of Duisburg-Essen

Kiel, Germany Duisburg, Germany

Programme Committee

Andrew Barto, Autonomous Learning Laboratory, University of Massachusetts Amherst, USA.
Peter Diirr, Laboratory of Intelligent Systems, EPFL Lausanne, Switzerland.

Christian Igel, Institut fur Neuroinformatik, Ruhr-Universitdt Bochum, Germany.

Yohannes Kassahun, DFKI Lab Bremen, University of Bremen, Germany.

Takanori Koga, Computational Brain Science Laboratory, Yamaguchi University, Japan.

Tim Kovacs, Department of Computer Science, University of Bristol, UK.

Jun Ota, Graduate School of Engineering, University of Tokyo, Japan.

Josef Pauli, Intelligent Systems Group, University of Duisburg-Essen, Germany.

Jan Peters, Max Planck Institute for Biological Cybernetics, Tibingen, Germany.

Daniel Polani, Department of Computer Science, University of Hertfordshire, Hatfield, UK.
Marcello Restelli, Artificial Intelligence and Robotics Laboratory, Politecnico di Milano, Italy.
Stefan Schiffer, Department of Computer Science, RWTH Aachen University, Germany.
Juergen Schmidhuber, Swiss Al Lab IDSIA, Lugano, Switzerland.

Nils T Siebel, Institute of Computer Science, Christian-Albrechts-University of Kiel, Germany.
Marc Toussaint, Berlin Machine Learning and Robotics Group, TU Berlin, Germany.

Jeremy Wyatt, School of Computer Science, University of Birmingham.

vii

viii

2nd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2009)
St. Louis, Missouri, USA, October 15 2009

Combining Central Pattern Generators with the Eledromagnetism-like
Algorithm for Head Motion Stabili zation during
Quadruped Robot Locomotion

Cristina P. Santos, Miguel Oliveira, Vitor Matos, Ana Maria A.C. Rocha and Lino Costa

Abstract— Visually-guided locomotion is important for au-
tonomous robotics. However, there are several difficulties,
for instance the head shaking that results from the robot
locomotion itself that constraints dable image acquisition and
the possbility to rely on that information to act accordingly.

In this article, we propose a controller architedure that is
able to generate locomotion for a quadruped robot and to
generate head motion able to minimizethe head motion induced
by locomotion itself. The movement controllers are biologically
inspired in the mncept of Central Pattern Generators (CPGS).
CPGs are modelled based on nonlinear dynamical systems,
coupled Hopf oscillators. This approach allows to explicitly
spedfy parameters auch as amplitude, offset and frequency of
movement and to smoothly modulate the generated oscill ations
according to changes in these parameters. We take advantage
of this particularity and propose a combined approach to
generate head movement stabili zation on a quadruped robot,
using CPGs and a global optimization algorithm. The best set
of parameters that generates the head movement are computed
by the dedromagnetism-like algorithm in order to reduce the
head shaking caused by locomotion.

Experimental resultson a smulated AIBO robot demonstrate
that the proposed approach generates head movement that does
not eliminate but reduces the one induced by locomation.

I. INTRODUCTION

Roba locomotion is a dalenging task that invoves
several relevant subtasks, not yet completely solved. The
motion o quadruped, biped and snake-like robas, for in-
stance, with cameras mounted in their heads, causes head
shaking. This kind o disturbances, generated by locomotion
itself, makes it difficult to keep the visual frame stable and,
therefore, to ad acording to the visua information. Head
stabili zaionis very important for achieving avisually-guided
locomotion, a concept which has been suggested from a
considerable number of neuroscientific findings in humans
and animals [1§].

As a basic reseach to redize visualy-guided quadruped
locomotion, we dm in this article & heal stabili zation o
a quadruped roba that walks with a walking gait. In ou
reseach, we propose a motion stabili zation system of an
ers-7 AIBO quadruped roba, which performs its own head
motion ac@rdingto afeadforward controll er. Several similar
works have been proposed in literature [4], [7], [6], [5].

Cristina Santos, Miguel Oliveira and Vitor Matos are with Induwstria
Eledronics Department, Schod of Engineging, University of Minhg
4800058 Guimaraes, Portugal cri stina@ei.um nho. pt,
ncanpos@lei . um nho. pt, vmat os@lei . um nho. pt

Ana Rocha and Lino Costa ae with Production Systems Department,
Schod of Engineeing, University of Minho 4710057 Braga, Portugal
arocha@lps. um nho. pt, | ac@ps. unm nho. pt

But these methods consider that the roba moves acording
to a scheduled roba motion gan, which imply that space
and time aonstraints on robat motion must be known before
hand as well as roba and environment models. As such,
control is based on this <heduled plan. Other works have
succesSully achieved gazestabili zation [5], that consists on
image stabili zation duing head movements in space The
overall of the gaze stabili zation approaches can be divided
into two types of techniques. One uses edfic hardware,
like accéerometers and gyroscopeto estimate the 3D posture
of the head, and complex control algorithms to compensate
the oscill ations. The use of inertial information was aready
proposed by severa authors [5], [16], [17]. Typicdly this
kind o techniques is used in binocular roba heads, where
gazeis implemented throughthe mordination o the two eye
movements. Most of the goproachesare inspired in biologicd
systems, spedficdly in the human Vestibular-Ocular Reflex
(VOR). Inrobaswith fixed eyes, the fixation pdnt procedure
isachieved by compensatory head or body movements, based
on multisensory information o the head.

In this work, a combined approach to generate head
movement stabili zation ona quadruped robad, using Central
Pattern Generators (CPGs) and the dedromagnetism-like
algorithm is proposed. We intend to use a head cortroller,
based on Central Pattern Generators (CPGs), that generates
trajedories for tilt, pan and nod lea joints. CPGs are neural
networks locaed in the spine of vertebrates, able to generate
coordinated rhythmic movements, namely locomotion [11].
These CPGs are modelled as coupled oscill ators and solved
using numeric integration. These CPGs have been applied in
drumming [1] and pcstural control [3]. This dynamicd sys-
tems approach model for CPGs presents multi ple interesting
properties, including: low computation cost which is well-
suited for red time; robustness against small perturbations;
the smooth online moduation o tragjedories throughchanges
in the dynamicd systems parameters and phase-locking
between the diff erent oscill ators for different DOFs.

In order to achieve the desired head movement, oppcsed
to the one induced by locomotion, it is necessary to ap-
propriately tune the CPG parameters. This can be adieved
by optimizing the CPG parameters using an optimization
method The optimization processis dore offline acording
to the head movement induced by the locomotion when no
stabili zation procedure was performed.

Some dgorithms for solving this type of problem require
substantial gradient information and am to improve the

2nd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2009)
St. Louis, Missouri, USA, October 15 2009

solution in a neighbahood d a given initial approximation.
When the problem has more than ore locd solution, the con-
vergence to the global solution may depend onthe provided
initial approximation. Thus, searching for a global optimum
is a difficult task that could be dore by using stochastic-
type dgorithms. The stochastic methods can be dassfied
in two main caegories, namely, the point-to-point seach
strategies and the popuation-based search techniques. From
the popuation-based techniques, we would like to emphasize
three particular algorithms, the dedromagnetism-like dgo-
rithm (EM) [12], the particle swarm optimizaion [13] and
genetic dgorithms (GA) [2] that despite enploying dff erent
strategies, they are eay to implement and computationally
inexpensivein terms of memory requirement. The GA iswell
suited and has already been applied to solve this optimization
problem because it can hande bath discrete end continuous
variables, norlinea objedive and constrain functionswithout
requiring gradient information [14]. Recently, EM agorithm
appeaed as a promising algorithm for handing ogimizaion
problems with simple bound. This technique is finding
popuarity within reseach community as design tods and
problem solvers becaise of their versatility and ability to
optimize in complex multimodal seach spaces applied to
nondfferentiable objedive functions [15]. In this paper, we
are interested in the gplicaion o the EM agorithm, pro-
posed in [12], to optimize the CPG parameters of amplitude,
off set and frequency of ead heal oscill ator to head motion
stabili zation duing quedruped roba locomotion.

The remainder of this paper is organized as follows. In
Sedion I, the system architedure and hov to generate
locomotionand head movement is described. The main ideas
concerning the optimization system, namely the problem
statement that eval uates the head movement, the EM mecha-
nism to optimizethe CPG parameters and some experimental
results, are described in Sedion IIl. Simulated results are
described in Sedion V. Conclusions are made in Sedion V.

Il. SYSTEM ARCHITECTURE

Our aim is to propcse a ontrol architedure that is able to
generate locomotion for a quadruped roba and to generate
head motion such as to minimizethe head movement induced
by the the locomotion itself.

The overall system architedure is depicted in Figure 1.

Model

CPGs
for X;

Head Movement (=t pan, nod) PID

¥ Locomotion
Controllers|_%i and

Head Movement

X.

CPGs !
for

Locomotion

(i=hips, knees)

Fig. 1. Overal system architedure

The proposed movement controllers are biologicdly in-
spired in the cncept of CPGs. A locomotion controller

generates hip and kreetrgjedories. A head controller spec
ifies the planned ned tilt, pan and nodjoint values. These
trajedories are used as input for the PID controll ers of these
joints.

The head controller parameters have to be tuned such
that the resultant movement is as desired. Using ou CPG
approach alows us to assgn explicit parameters for eat
of the norlinea oscill ators, independently controlling the
amplitude, off set and frequency of the movement. We goply a
stochastic optimizaion method, the EM algorithm, in order
to determine the best set of CPG control parameters that
results in, or close to the desired movement. This st of
parameters constitute the Model modue in Fig. 1.

A. Locomotion Generation

In this ®dion we present the network of CPGs used to
generate locomotion. A CPG for a given degreeof-freedom
(DOF) is modell ed as couped Hopf oscill ators, that generate
a rhythmic movement.

1) Rhythmic Movement Generation: Rhythmic move-
ments are generated by the following Hopf oscill ator

B (1 —rf) (x—O) — waz, (@)
B(li—r17)z+wx—0), @)

% =
.Zi:

where i = 4/ (X —Oi)2+2|-2, w spedfies the oscill ations
frequency (in rad s 1), pea-to-peak amplitude of the os-
cill ations are given by A; = 2 ,/[i; and relaxation to the limit
cycle is given by Wl.

This Hopf oscill ator contains a bifurcaion from a stable
fixed pant at x; = O; (when L < 0) to a structurally stable,
harmonic limit cycle, for p; > 0. The fixed pant x; has an
off set given by O;.

Thus, this Hopf oscill ator exhibits limit cycle behaviour
and describes a stable rhythmic motion where parameters
A, w and O; control the desired amplitude, frequency and
offset of the resultant oscill ations.

2) Locomotion Cortroller Architedure: We have to couw-
ple the oscill ators in order to ensure phase-locked synchro-
nizaion between the hip and knee DOFs of the roba, and
generate locomotion with a desired gait.

Fig. 2 depicts the network structure used to generate
locomotion for a quadruped roba. Hopf oscill ators of the

Knee FL FR

Knee

HL HR

Fig. 2. Locomotion controller architedure depicting couding structure
among the CPGs for a walking ggit. The footfall sequence is: HL-FL-HR-
FR, with ead foot lagging a quarter of a ¢/cle from the previous.

hips are bilaterally couped, these coupings being ill ustrated
by right-left arrows, and hip Hopf oscill ators are unil aterally

2nd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2009)
St. Louis, Missouri, USA, October 15 2009

couded to the correspondng knee Hopf oscill ators. For the
hip joints, this is achieved by modifying (1) and (2) as

follows:
X[_ B @ | |Xgy—Op| _ pe2 Xy —Op
[Z[ﬂ - [w 5“‘] [l211 1} Bri[l][T l}

;R I[1] Znu }

For the kneejoints, we modify (1) and (2) as follows:
] = o s
—R(l,UJ) { 1]01[11}

where ri[k] is the norm of vedor (x[k] — Ojy,z[K)" (k =
1,3, that is hip and kree joints) and i, j = Fore Left (FL),
Fore Right (FR), Hind Left (HL) and Hind Right (HR)
limbs. The linea terms are rotated orto ead other by the
rotation matrices R(Gij[[ll]]) and R(L,Ui”;]]), where 617 is the
relative phase anongthei[1]'s andj[[l]’s hip oscill ators and
represents bldlredlonal couﬂlngs between these oscill ators
such that 6' —6 1 and l[lljé is the required relative phase
amongthe|[%] sancgj[l] sosm]llators (seeFig. 2). We ssaure
that closed-loop interoscill ator coudings have phase biases
that sum to a multiple of 2 .

Each hip oscillator lags a quarter of a ¢ycle from the
previous. The relative phases between hips and krees, w”l
were dl set to 180

Due to the properties of these couded Hopf oscill ators, the
generated trajedories are dways snocth and thus potentially
useful for trgjedory generation in a roba.

This network structure constitutes the locomotion con-
troller that generates desired trgjedories, x;, obtained by
integrating the CPGs dynamicd systems. These ae sent
online for the PID controllers of ead hip and kreejoints
and result in the adual trgjedories X;.

3) Generating a walking gdt: A gait event sequence is
spedfied using the duty fadors andthe relative phases, where
the first event, and the start of the stride, is chosen as the
event when the fore left leg (referenceleg) is =t down. We
have set a nonsinguar, regular and symmetric gait with a
FL-HR-FR-HL gait even sequence {¢rL, Pur, Yrr, YHL,
Orr, OHL, WeL, YHR}), a duty fador of 0.73 and a velocity
of 19mms~! (measured in the Z diredion, seeFig. 3).

We have implemented in webots [8] this locomotion
controller (simulation results and the experiment description
is detailed explained in sedion).

+

+

B. Head Movement Generation

Heal movement is generated similarly to locomotion, but
a CPG for a given DOF is modelled as an Hopf oscill ator,
not couded to any other oscill ator. Each CPG, therefore,
generates a rhythmic movement acwrding to

I | Al B e A

where i =tilt,pan,nod

The aontrol padlicy is the x; variable, obtained by integrat-
ing the CPGs dynamicd systems, and representstilt, pan and
nod joint angles in our experiments. These ae sent online
for the correspondng PID controllers.

Note that the final movement for ead of these joints is a
rhythmic motion which amplitude of movement is gedfied
by i, offset by O; and its frequency by w.

The differential equations for locomotion and head move-
ment are solved using Euler integrationwith afixed time step
of 1ms. Thex; trgjectories represent anguar positionsand are
diredly sent to the PID controllers of the joint servomotors.

Il. OPTIMIZATION SYSTEM

In this ®dion, we eplain howv the head CPGs are
optimized in order to reduce the canera (head) movement
induced by locomotion itself. We will optimize the distance
between the generated head movement for a set of head CPG
control parameters and the one induced by locomotion.

In order to implement the head motion it is necessary
one or several optimal combinations of amplitude, off set and
frequency of ead heal oscill ator. This is possble becaise
we ca easily moduate amplitude, offset and frequency of
the generated trgjedories ac@rding to changes in the A,
O; and w CPG parameters and these ae represented in an
explicit way by our CPG. Therefore, we have to tune the
head CPG parameters. amplitude A;, offset O; and common
frequency w. In order to optimize the combinations of the
different head CPG control parameters the EM algorithm is
used.

The multitude of parameter combinationsislarge, anditis
difficult to derive an acairate model for the tested quadruped
roba and for the environment. Besides, such a model based
approach would also require some post-adaptation o results
(because of badlash, friction, etc).

In this dudy, the seach of parameters aiitable for the
implementation o the required head motion was caried
out based on the data from a simulated quadruped robat.
The (X,Y,Z) heal coordinates, in a world coordinate system
(Fig. 3), are recorded when a simulated roba walks during
30sand no read stabili zationis performed. We ae interested
in the oppasite of this movement aroundthe (X,Y,Z) coordi-
nates. This data was mathematicdly treaed such as to keep
only the oscill ations in the movement and remove the drift
that the robat has in the X coordinate and also the forward
movement in the Z coordinate. From now on, this data is
referred to as (X,Y, Z)opserved-

In the simulation, we have set a ¢ycletime of 30ms, that is,
the time neaded to perform sensory aqquisitions, cdculate the
planned trajedories (integrating the differential equations)
and send this data to the servomotors. The (X,Y,Z)observed
data is sampled with a sample time of 30ms, meaning we
have atotal of 1000samples. A simulated time of 30s corre-
spondsto 10strides of locomotion. Thistime is arbitrary and
could have been chasen differently but seems well suited to
find a model representative of the head movement induced
by the locomotion controll er.

2nd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2009)
St. Louis, Missouri, USA, October 15 2009

Fig. 3. World coordinate system.

The basic idea is to combine the CPG model for heal
movement generation with the optimizaion algorithm. Fig. 4
ill ustrates a schematics of the overall optimization system.

(X,Y,Zi)bserved

Aot 3D 1005 Do
EM Ay ® i Oy
Algorithm

Ao ,,,0,

tilt tilt tilt

(X,Y,.Z)calculated

Forward |
Kinematics «—24

CPG’s i

Head movement generation

Fig. 4. Schematics of the optimizaion system.

Three head CPGs (3) generate during 3G rhythmic mo-
tions for the tilt, pan and nodjoints. By applying forward
kinematics, we cdculate the resultant set of 1000 samples
of (X,Y,Z)cdculaed hea coordinates in the world coordinate
system.

A. Problem Definition

The sum of the distances between eat sample of the
observed and cdculated heal coordinates is used as fitness
function in order to evaluate the resulting head movement.
Thus, the fitness of the ith pant is given by

= S) () (2-3) @

where j is an heal pasition sample (becaise the points are
generated and aayuired in a discrete manner); n is the total
number of samples originated during the evaluation time;
(X",Y',Z") represent the cdculated head coordinates with the
CPG parameters and (X, Y, Z) represent the offline observed

head coordinates. Only head pasition errors are computed in
the fitnessfunction, becaise we only control three DOFs and
as auch canna control head orientation.

In the optimizaion processead pant is evaluated acord-
ing to its fitnessfunction value. Since we have apopuation
of paints the one with the smallest distance is denoted as
the best point. Then, in the EM agorithm, ead pant is
direded for a better position, inside of the dlowed limits.
The search ranges of the head CPG control parameters were
set beforehandas shownin Table | for the purpose of efficient
leaning and acording to the limits of the tilt, pan and
nod DOFs. Seach for optimal parameters is caried ou by
performing the overall optimizaion system over a preset
number of iterations.

TABLE |
SEARCH RANGES OF CPG PARAMETERS

Parameter Range Unit
Avilt [0,75 ©
Whilt [1,12] (reds*l)
Oxit [—75+ Ain 0 %] ©
Apan [0,(88+88)] ©
Gpan 1,12 (rads 1)
Opn_|[[-88+ 588 5] O
Anod [0,(45+ 15)] O
GWhod (1,12 (rads™1)
Ons |[[15+ 445~ 5] 0

The combinations of amplitude, offset and frequency of
ead tilt, pan and nod axcill ators, that are necessary to
generate the desired head movement, form ead pant of the
popuation. Each coordinate of the paoint consists in 9 CPG
free parameters that span our vedor X' for the optimization,
as follows

([X% [[x [5[% [% [% [x|
[At | @it | Otit | Apan | @han | Opan | Anod | @hod | Onod |

B. Eledromagretism Algorithm

The EM agorithm starts with a popdation o randamly
generated pants from the feasible region. Anaogows to
eledromagnetism, ead pant is a charged particle that is
released to the space The charge of ead pant is related
to the fitness function value and determines the magnitude
of attradion o the point over the popuation. The better the
fitnessfunction value, the higher the magnitude of attradion.
The darges are used to find a diredion for ea padnt to
move in subsequent iterations. The regions that have higher
attradion will signal other points to move towards them.
In addition, a repulsion mecdhanism is also introduced to
explore new regions for even better solutions. Thus, the
EM agorithm comprises 3 procedures: Initialize that will
run orly once in the start of the EM algorithm, CalcF and
Move these latter running sequentially every iteration. A
more detailed explanation o the EM algorithm foll ows.

Initialize is a procedure that aims to randomly generate a
popuation o points, X, from the feasible region, where eat

2nd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2009)
St. Louis, Missouri, USA, October 15 2009

coordinate of a point is assumed to be uniformly distributed
between the rrespondng upger and lower bound. Note
that in order to guaranteethe feasibility of the initial points
andall points generated duringthe search arepair mechanism
was implemented. Thus, an infeasible solution is repaired
exploringthe relations among veriables expressed by the box
constraints.

Then to compute the fitness function value for al the
points in the popuation, they will be the inpu of the head
movement generation process (see Fig. 4) and by applying
forward kinematics the resultant (X,Y,Z)c4culaed hea coor-
dinates are computed. With them the fitness function value
for al the points is cdculated and the best point, which is
the point with the best fithess function value, is identified.

For the CalcF procedure, the Coulomb's law of the
eledromagnetism theory is used. Thus, the force eerted ona
point via other pointsis inversely propartional to the square
of the distance between the points and dredly propartional
to the product of their charges. Then, we compute the charges
of the paints acwrding to their fithess function values. The
charge of ead pant determines the power of attradion o
repulsionfor that point. In thisway the points that have better
fitnessfunction values possesshigher charges. Thetotal force
vedor exerted onead pant is then cdculated by adding the
individual comporent forces between any pair of points.

The Move procedure uses the total force vedor to move
the paint in the diredion o the force by a randam step
length. The best point is not moved and is caried ou
to the subsequent iterations. To maintain feasibility, the
force eerted on eat pant is normalized and scded by
the dlowed range of movement towards the lower or the
upper bound for eat coordinate. To ensure feasibility in
this movement algorithm we define the projedion o eadh
coordinate of the paint to the feasible region, acording to
the range presented in Table I.

After the EM agorithm, ead pant shoud be evaluated
in terms of fitness function value, so they shoud goto the
head movement generation process Then this algorithm is
repeded.

C. Experimental Results

The optimizaion system was implemented in Matlab
(Version 65) runningin an AMD Athlom XP 2400+ 2.00Gz
(512 MB of RAM) PC. The system of equations was
integrated using the Euler methodwith 1ms fixed integration
steps (similarly to the ssimulated robatic experiments). The
evaluation time for head movement generation is 30s.

In our implementation, the optimization system ends when
the number of iterations exceels 2000iterations. In this gudy
the number of pointsin the popuation was st to 20. When
stochastic methods are used to solve problems, the impad of
the randam number seeds has to be taken into consideration
and eadt optimization process $ioud beruna cetain number
of times. In this experience we set it to 10

Table Il contains the Best, Mean and standard deviation
(SD) vaues of the solutions found (in terms of fitness
function and time) over the 10 runs. We can seethat the SD

TABLE Il
PERFORMANCE OF EM ALGORITHM IN THE OPTIMIZATION SY STEM

Best Mean SD Best Mean SD
fitness | fitness fitness time time time
(mm) (mm) (mm) (hous) | (hous) | (hous)
4261 | 532553 | 8706349 | 6.1047 | 6.5089 | 0.4120

value, in terms of fitnessfunction, is alarge value. It denotes
that fitnessvalues obtained in ead run are not similar. It can
be seen by Fig. 5 that shows the evolution o the best (solid
line) and mean (dashed line) fitness function value over the
2000iterations. The best point has afitnessvalue of 4261that
was adieved at iteration 1150 The best run took 6h18nin
(CPU time) and ead iteration took in average 11.16 seaondk.

Fitness
N

500 1000 1500
Iterations

0.4261

Fig. 5. Best (solid) and mean (dashed) fitness evolution.

Table Il shows the tuned CPG parameters representing
the best point found over 2000iterations, in the 10 runs.

TABLE Il
BEST POINT CPG PARAMETERS

Parameter|| Vaue Unit
Avitt 0.0001 | (9
Yiilt -6x10% (9
Wit 6.707 |(rads1)
Apan 7.77 ©
Yoan 0072 | (©
Woan 212 |(rads 1)
Anod 0.0001 | (9
Ynod -118)
Whod 1 (rads)

A better understanding o the evolution o the fitness
function can be seen in Fig. 6 where the distance between
observed and cdculated values of the head movement at
the beginning and at the end o the optimization system is
displayed. We can observe that this distance, in ead sample
time for time ranging between t =5 and 15, is analer at
the end o the process In average, we can aso conclude that
after 2000iterations of the optimization system, a reduction

2nd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2009)
St. Louis, Missouri, USA, October 15 2009

time (s)

Fig. 6. Distance between olserved and cdculated values of the head
movement at the beginning (dotted line) and at the end (solid line) of the
optimization system, for time ranging from 5 to 15 se@mnds.

of 22,17% of the head movement is verified.

Fig. 7 depicts the time courses of the (X,Y,Z) cdculated
(solid line) head movement acwrding to the head CPG
control parameters of the best solution found The observed
(dotted line) head movement is also illustrated. Table 1V
gives the maximal movement variation in the (X,Y,Z) co-
ordinates for the cdculated and olserved movements. We
conclude that the generated movements are quite similar in
the X coordinate. The cdculated movement is quite diff erent
intheY and Z coordinate. This results from the fad that only
the pan joint controls movement in the X coordinate, while
both the tilt and nodjoints control the Y and Z coordinates.

X(mm)

Y(mm)

Fig. 7. (X,Y,Z) cdculated (solid line) and olserved (dotted line) head
movement, during 305, acaording to the head CPG control parameters from
best point on the final of optimizaion system.

Fig. 8 depicts 3D cdculated (solid line) and olserved
(dotted line) head movement for the best point.

We have dso made ancther experiment, where we have
changed the size of the popuationto 50 pants, maintaining
the number of 2000 iterations to terminate the process

TABLE IV
MAXIMAL MOVEMENT VARIATIONIN (X,Y,Z)

Max AX|Max AY|Max AZ
(mm) | (mm) | (mm)
Calculated Movement|| 1147 0 0.2
Observed Movement || 1342 59 113

Fig. 8. 3D cdculated (solid line) and olserved (dotted line) heal
movement acording to the CPG parameters of the 115¢h iteration best
point. START (FINAL) and start (final) indicae where the observed and
cdculated movement started (ended), respedively.

Running the optimization system we obtained a best fitness
function value of 3991 at iteration 1760

IV. SIMULATION RESULTS

Our aim was to buld a system able to eliminate or reduce
the head motion o arobat that walks in the environment. For
that, we set a dynamicd controll er generating trgjedories for
the head joints such that the final head movement is oppdasite
to the one induced by locomation.

In this =dion, we describe the experiment dore in a
simulated ers-7 AIBO roba using Webots [8]. Webats is a
software for the physic simulation o robas based on ODE,
an open source physics engine for smulating 3D rigid body
dynamics. The model of the AIBO is as close to the red
roba as the simulation enable us to be. Thus, we simulate
the exad number of DOFs, massdistributions and the visual
system.

The as-7 AIBO dogroba is a 18 DOFs quadruped roba
made by Sony. The locomotion controll er generates the joint
angles of the hip and kreejoints in the sagittal plane, that
is 8 DOFs of the roba, 2 DOFs in ead leg. Only walk gait
is generated and tested.

The heal controller generates the joint angles of the 3
DOFs: tilt, pan and nod The other DOFs are not used for
the moment, and remain fixed to an appropriately chosen
value during the experiments.

The AIBO has a canera built i nto its head.

2nd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2009)
St. Louis, Missouri, USA, October 15 2009

At ead sensoria cycle (30ms), sensory information is
aquired. The dynamics of the CPGs are numericdly inte-
grated using the Euler method with a fixed time step of 1ms
thus gedfying servo pasitions. Parameters were dhosen in
order to resped feasibility of the experiment and are given
in Table V and VI.

TABLE V
PARAMETER VALUES FOR GENERATING LOCOMOTION

B |wCadsH) | i [5500
Front Limbs 0.1 2.044 6.25 0.8
Hind Limbs || 0.025 | 2.044 25 |08
TABLE VI

PARAMETER VALUES FOR GENERATING HEAD MOTION

B w (rads™?) Hi PTG
tilt || 1.25x 10° 419 25%x 1079 0.8
pan 0.041 2.09 1513 0.8
nod || 1.25x 10° 419 25x10°° 0.8

Becaise we ae working in a smulated environment, we
are &le to buld a GPSinto the AIBO camera, that enable
us to verify how the heal effedively moves in an externa
coordinate system. Two simulations are performed: the robat
walks during 30 with and withou the feedforward solution
and its GPS coordinates are recorded. Results are compared
for these two simulations. Fig. 9 shows the GPS coordinates
for the experiments with (solid line) and withou the feedfor-
ward solution (dotted line). The overall experiment can be
seen in the atached video.

X(mm)

232 1

~
E 230 . 1
= 228}
>
2261
‘
0 5 10 15 20 25 30
-200F —
~
IS
£ -400 E
£
N
7600 C L L L L L |
0 5 10 15 20 25 30

Fig. 9. (X,Y,Z) coordinates of the GPSpositioned in the AIBO heal when
the roba walks during 3Gs. Solid and ddted lines indicae the experiment
in which the feedforward solution is and is not implemented, respedively.

We exped that the proposed feadforward solution mini-
mizes the variation o the GPScoordinates, meaning that the
head remains nea the same position duing the experiment.

We observe that the X coordinates of the marker position
oscill ate less Note that there is ome drift in the X coor-
dinates, meaning the roba dightly deviates towards its sde
whilewalking. The observed pe&ksin theY coordinaterefled
the final stage of the swing phase and the begin of the stance
phases of the fore legs, correspondng to an accentuated
movement of the roba center of mass This problem will
be aldressed in current work, by improving the locomotion
controller and take into acourt balance ontrol [3].

V. CONCLUSIONS AND FUTURE WORKS

In this article, we have addressed head stabili zation o a
quadruped roba that walks with a walking ggit. A locomo-
tion controll er based on dyramicd systems, CPGs, generates
quadruped locomotion. The required head motion rneeded to
eliminate or reducethe head shakinginduced by locomation,
is generated by CPGs built-in in the tilt, pan and nod
joints. These CPG parameters are tuned by an optimizaion
system. This optimization system combines CPGs and the
EM agorithm. As a result, set of parameters obtained by
the EM alows to reduce the head movement induced by the
locomotion.

Currently, we ae using aher optimizaion methods, like
the particle swarm optimizaion, and testing aher fitness
functions. We will extend this optimization work to address
other locomotion related problems, such as. the generation
and switch among dfferent gaits acording to the sensorial
information and the oontrol of locomotion dredion. We
further plan to extend ou current work to onine leaning
of the head movement similarly to [9].

REFERENCES

[1] S Degdlier, C P. Santos, L Righetti and A |jspeat,Movement Gen-
eration wing Dynamical Systems: a Drumming Humandd Robd.
In Humanoids06 IEEE-RAS International Conference on Humanoids
Robds, Genowe, Italy, Decanber 4-6 2006

[2] Goldberg, D.,Genetic Algorithms in Search, Optimizaion,and Machine
Leaning, Addison-Wesley, (1989.

[3] Castro, Luiz, Santos, C P; Oliveira, M and ljspeat, A, Postural Cortrol
on a Quaduped Roba Using Lateral Titl: a Dynamical System
Approach, European Robdics Symposium EUROS 2008 Prague,
2008

[4] Tekizawa, S, Ushida, S, Okatani, T, Deguchi, K.,2DOF Motion Sa-
bili zation o Biped Roba by Gaze Control Srategy. 2005 IEEERS]
International Conference on Intelligent Robds and Systems (IROS
2005. Aug. 200538093814

[5] Ravi Kaushik, Marek Marcinkiewicz, Jizhong Xiao, Simon Parsons,
and Theodare Raphanimplementation o Bio-Inspired Vestibulo-Ocular
Reflex in a Quadrupedal Roba 2007 |IEEE International Conference
on Robdics and Automation (ICRA 2007, Roma, Italy, 10-14 April
2007 48614866

[6] Yamada, H.; Mori, M.; Hirose, S.,Sabili zation o the head o an undu
lating snake-like roba, it 2007 IEEE/RS] International Conference on
Intelli gent Robas and Systems (IROS 2007), San Diego, CA, USA,
Oct 29 - Nov 2, 2007: 35663571

[7] Yurak Son, Takuya Kamano, Takashi Yasuno Takayuki Suzuki,and
HironobuHarada,Generation of Adaptive Gait Patterns for Quadruped
Roba with CPG Network Including Motor Dynamic Model, Eledricd
Engineaing in Japan, Vol. 155 No. 1, 2006

[8] O. Michel, “Webats: Professonal mobile roba simulation,” Interna
tiond Journa of Advanced Robdic Systems, vol. 1, no. 1, pp. 39-42
2004

[9] A. Sproewitz, R. Moede, J. Maye, M. Asadpou, and A.J. |jspeeat.
Adaptive locomotion control in moduar robdics. In Workshop on
Self-Remnfigurable Robas/Systems and Applications IROS07, pages
81-84, November 2007.

2nd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2009)
St. Louis, Missouri, USA, October 15 2009

[10] Ludovic Righetti and Auke Jan ljspeeat.Pattern generators with
sensory feedback for the oontrol of quaduped locomotion. IEEE
International Conference on Robatics and Automation ICRA 2008
Cdlifornia, 2008

[11] S. Grillner. Neurobiological bases of rhythmic motor acts in verte-
brates. Science, Vol. 228 No. 4696 pp. 143149, 1985

[12] S.I. Birbil and S. Fang, An eledromagretism-like mecharism for globd
optimization, Journal of Global Optimizaion 25(2003, pp. 263-282

[13] J. Kennedy and R.C. Eberhart, Particle swarm optimization, in IEEE
Internationd Conference on Neural Network, 1995 pp. 1942-1948

[14] Cristina Santos, Miguel Oliveira, Ana Maria A.C. Rocha and Lino
Costa, Head Motion Sabhili zation During Quadruped Roba Locomo-
tion: Combining Dynamical Systems and a Genetic Algorithm, IEEE
International Conference on Robdics and Automation (ICRA 2009,
May 12-17, Kobe, Japan 2009

[15] Rocha, Ana Maria A.C. and Fernandes, Edite M.G.P,, Performance
profile asssanent of eledromagretismlike algorithms for globd
optimization, AIP Conference Procealings, Vol. 1060 (1), Springer-
Verlag (2008, (15-18).

[16] F. Patane, C. Laschi, H. Miwa, E. Gugieimelli, P. Dario, and A.
Takanishi, Design and eévéopment of a hiologicall y-inspired artificial
vestibular system for roba heads, in IEEE Conference on Intelli gent
Robads and Systems, IROS 04, Sendai, Japan, September 28 - Ocotber
2, 1317 1322 2004

[17] G. Asuni, G. Teti, C. Laschi, E. Gudiemelli, and P. Dario, A
robaic head reuro-controller based on hologically-inspired neural
methods, in IEEE Conference on Robatics and Automation, ICRA’05,
Barcdona, Spain, April 18-22, 2005

[18] R. Cromwell, J. Schurter, Scott Shelton, S. Vora, Head stabili zation
strategies in the sagittal plane during locomotor tasks, Physiotherapy
Reseach International, Whurr Publishers Ltd, 9(1), pp.3342 2004

2nd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2009)
St. Louis, Missouri, USA, October 15 2009

Combination of Reinforcement Learning and Neural Networks

Anastasia Noglik and Josef Pauli

Abstract— Reinforcement Learning has been already suc-
cesdully applied to the problem of a target oriented robot
navigation. However one of its drawbacks is the usually ob-
served low convergence rate of the learning progress To weaken
this disadvantage the present work suggests to use a control
function which is represented by a neural network to prevent
the agent of collisions with objeds if a dangerous stuation
has been recognized. This leads to a better performance of the
learning processand to areduced number of collisions. Sincean
evolutionary algorithm is used to develop the neural network,
little effort is necessary to train the network.

I. INTRODUCTION

Reinforcement Leaning (RL) is a sub-area of machine
leaning and describes methods for solving a dass of prob-
lems. Inspired by psychologicd theory, RL is concerned with
how an agent ouglt to take adionsin an environment so asto
maximize some nation o longterm reward. Reinforcement
Leaning algorithms attempt to find a policy that maps dates
of the world to the adions the agent ouglt to take in thase
states.

In the last few decales a lot of interesting work have been
dore in this area Severa agorithms have been developed
to solve various problems including roba control, elevator
scheduling o telecommunicdions. RL was also succesgully
applied in the development of game strategies of badcgam-
mon and chess

However, similar to most other algorithms there ae dso
some main drawbads, which have to be taken into ac
court. One common issJe is the poa convergence of these
approaches [9]. The reasson o it usualy lies in the high
dimensiondlity of the correspondng pdicy/value function.
Also alarge number of episodes is needed to find a suitable
strategy. In case of planning and leaning Sutton et. al.
addressd this problem by developing the Dyna-Q algorithm
[11]. Here the pdlicy/value function is influenced based na
only on the red experience of an agent, but aso on its
simulated experience, which is produced throughthe model -
based processes including in this algorithm.

In the work presented here, this problem is addressed by in-
corporating additional context knowledge eou the goplica
tion damain. This additional knowledge can highly improve
the conwergence of the reinforcement method and usually
can be ealy extraded from the correspondng damain.
However a lot of the existing agorithms discard this kind
of knowledge or do nd provide any way to incorporate it in
the leaning process

There ae diff erent forms of context knowledge. One example
is knowledge which is extracted from the information which
is arealy used in the leaning process of the agent. This
context knowledge can be provided to the leaning processin

form of e.g. a heuristic function, see[2], [5]. An other form
of context knowledge is extraded from information abou
the ewvironment which is nat used in the leaning process
This context knowledge is used in a control function for the
agent.

The functiondlity of the proposed method is ill ustrated in
case of a goal oriented navigation problem. Here the am
of the agent is to lean a short and colli sion free path from
a given starting state to a target point through a complex
environment. The agent has two sources of information
avail able. The idiothetic sourceis used to spedfy the agent’s
position in a state space The dlothetic source, in this work
the infrared sensors, is used to extrad the required additi onal
knowledge. This knowledge serves as a cntrol function to
save the gent from dangerous stuations, like unintended
bumping into the wall. In this method the cntrol functionis
approximated using an evolutionary gained artificial neural
network (ANN) (NEAT Method [10]).

An example for the combination o both methods is the
NEAT+Q agorithm, [13]. This agorithm combines the
power of RL methods with the aility of NEAT to lean
effedive representations. The NEAT+Q algorithm is an ex-
tension o the NEAT method wsing RL. The dgorithm which
is proposed in the present work is an extension d RL using
ANN which is gained using NEAT.

The incorporation o the cntrol function into the leaning
process involves svera interesting aspeds. First of al the
two information sources have to be fused together. Secondy
the question o an appropriate discretization o the adion
spaceis raised. The way the oontrol function influences the
leaning processis described in more detail i n the remainder
of this paper.

The present work investigates the performance of the pro-
posed method by \arying the influence strength of the control
function onthe leaning process The investigations are per-
formed with a Scorpionroba from Evolution Robaics with a
certain medchanicd design and infrared sensors. Therefore the
results are nat valid for al models of the roba. But the used
methods for investigation and determination o optimized
parameters are goplicable to al types of agents.

I[l. BACKGROUND

In the present work the linea gradient Sarsa(\)-Algorithm
is used as a basic method [7]. Tile Coding is €leded as
discretization method for the state space The adion-state
function is approximated by a linea function. The proposed
extension uwses locd information as context knowledge
which is different from the global information in the state
of the agent. Hence the basic method can be replaced by

9

2nd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2009)
St. Louis, Missouri, USA, October 15 2009

Target @)

1 I
Start i

Fig. 1. Simple ewironment 1 for the determination o optima parameter
sets

other Reinforcement Leaning methods. The state space ca
be discretized or represented by dfferent approaches.

A. Sasa()) Algorithm

Reinforcement Leaning is a synonym of leaning by

interadion. Fully adaptive control agorithms which lean
both by otservation and trial-and-error are a promising
approach in madiine leaning. RL is defined as the leaning
of a mapping from situations S (S is the set of possble
states) to adions A (A isthe set of adions) so asto maximize
an acaimulated scdar reward or reinforcement signa r.
Rewards r are gratificaions or purishments and are ameans
of informing the agent abou the target.
An adion-state value function Q7 (s, a) is defined as the
value of teking adion a € A(s) in the state s € S under
a padicy © and provides a measure for the quality of the
(s,a)-pair. The function is defined as an expeded return of
future rewards:

Q" (s,a) = E, {kart+k+1st =s,a; = a}
k=0

where v is a discourt fador [12].

Sarsa()\) is an onpdicy leaning method which continually
estimates Q™ for the behavior pdicy 7 [12]. Leaning is an
iterative process In the beginning the agent owns a randan
subogimal value function and strategy. The basic leaning
step updates a single Q-value. a;; is obtained from the e-
greedy pdicy that uses values from the estimated Q-function.
Subsequently the Q-value for (s, a) is updated as follows:

Q(s¢,a1) — Q(s¢, ar) +ariy1+7Q(St41, ary1) —Q(S¢, ay))

1
where « isthe leaning rate. The Q-function is approximated
by a linea function.

B. Tile Coding, Function Approximation, State Space, Ac-
tion Spae

1) Tile Coding: The successof RL with large mntinuows
state spaces depends on an effedive Q-function approxima-
tion. Of the many function approximation schemes propased,
tile aoding dfers an empiricdly successul balance anong
representational power, computational cost, ease of use and
it has been widely adopted in recent RL work[8].

To generdlize the state representation the table of @Q-values

Fig. 2.
Robatics

Model of the ERSP orpion roba of the company Evolution

can be goproximated using a representation o the state space
with tile coding [1]. Tile coding is a form of coarse mding.
Intile coding the receptive fields of fedures are grouped into
exhaustive partiti ons of theinput space Eacdh such partitionis
cdled tiling, and ead element of thetilingiscdledtile. Each
tile is the receptive field for one binary feaure. According
to the chosen discretization o the state space one state is
represented by ore feaure only.

2) Function Approximation: The Sarsa(\) algorithm with
function approximation was first explored in [7]. The Q-
function is approximated in the present work by a linea
function. The representation d the Q-function by a parame-
ter vedor is defined as:

Q(s,a) == Z 0,(1)-¢s(i), Fs — set of fedures present in s
i€F,

The respedive Q-value mrresponds then to the value of the
currently involved binary feaure.

3) Sate Spae The three xes of the state spacein the
defined navigation problem correspond to the horizontal x
and werticd position y of the ggent and its orientation o.
The discretizaion o the state spacesignificantly influences
the performance of the leaning process The discretizaion
N, x N, x N, spedfies the number of fegure ceters along
the paositions and crientation axes respedively. The x, y-plane
was discretized acording to the roba size Each redange
of this plane was as big as it does not exceel the size of the
roba. An example of such a discretizaion can be seen in
figure 1.

4) Action Spae An adion is a vedor which consists
of two scdar values forward velocity and rotation velocity
(v, 3), where the unit of v is centimeters per minute and the
unit of 3 is degrees per minute. The adion spaceof the to be
leaned Q-Function consists of threediscrete adions: forward
movement (v := 10,8 := 0), turn left (v := 0,5 := 15°),
turn right (v := 0,8 := —15°). The control function which
is represented by an ANN gives only red values, (v,3) €
[0,10] x [—90°,90°].

C. Roba and Intelli gent Agent

In the present work the terms mobile roba and intelli gent
agent are used synonymously. The experiments with the
agent are performed as a numerica simulation. But as inpu
to the ayent true sensor values are used which have been
measured previously with the red roba. This results in a
true-to-redity simulation [4]. That is the reason why the
intelli gent agent in the simulation is cdled roba. The model
of the mohil e Scorpionroba (agent) used in the simulationis

10

2nd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2009)
St. Louis, Missouri, USA, October 15 2009

/AR

Fig. 3. Example of the automaticaly developed ANN

equipped with seven infrared sensors (sq, .. .
2.

D. NEAT Method

Neuro Evolution o Augmenting Topdogies (NEAT) ap-
plies the evolutionary approach for the development of the
topdogy as well as for the determination o the weights of
an Artificial Neural Network (ANN). A NEAT is used in the
simulation for the training o an ANN, which is able to take
over the cortrol of the roba. Each ANN is an individuum
with the sameinpu (7 sensors and 1 kias node) and ouput (2
control commands for rotation and forward velocity) layers.
NEAT has been seleded due to a high adaptation ability and
relatively smple goplicaion. An extensive description o the
system provides the work [10].

The oourter of the mvered angle from the given center in the
pre-defined diredion has been seleded as fitness function.
Examples for more fitnessfunctions are described in [6] and
[3]. Different scenarios have been used in the simulation
during the training phese to train the required skill's. For
example the ggent leans afast readion to suddenly occurring
objeds when its darting pant is very close to a wall.

The ANN which represents the aontrol function is akind o
readive behavior pattern for robas. The ANN encodes a di-
red mapping o the sensor values on the ntrol commands.
The resulting ANN intervenes during dangerous stuations to
prevent colli sions with obeds.

s7), seefigure

E. Control Function apgiximated by ANN

An example of an ANN which has been trained with
the @owe described method, fitness function and scenarios
is depicted in figure 3. This ANN has been aso tested
succesully in redity. Yellow marked edges have apasitive
weighting, blue marked edges have a negative weighting.
The thicker the line is, the higher is the asolute value of
the weight for the shown conredion. The green lines are the
bias conredions. The red connedions mean a feedbad.

I11. CONCEPT OF EXTENDED METHOD

To wedken Reinforcement Leaning dsadvantages the
present work suggests to use a ontrol function which is
represented by a neural network to prevent the agent of
collisions with oljeds if a dangerous stuation hes been
recognized. Thisleadsto abetter performance of the learning
processand to a reduced number of colli sions.

To extend the basic method by control function, the method
has to be modified in such way, that the leaning process
is affeded as little @& necessry and the benefit is as high

as possble. On the one hand RL shoud na natice the
extension, and onthe other hand the control function shall
proted the roba from collisions as good as posshle.

Such a oontrol function can na only be represented with an
ANN which is achieved with an evolutionary approach. But
the antrol function can can also be gained e.g. by using
control theory or fuzzy logic. Such a control function has
to be generated orly once and can be used as extension o
the basic method for different problems. Therefore it is not
necessary to consider the time which is needed for generation
of the control function in the overall time which is needed
for the solution o the problem.

A. Problems and Sdutions

The roba recaves snsor values which are in the range
of [0;80]. The diredions of the roba’s sensors are depicted
in figure 2. A collision with the ewvironment is sgnaed, if
a sensor measures the minimum value below a predefined
threshald, so Smin = MIN;=1.... 7S; < Slimit: whereas here
Stimit = 15.

The basic and extended methods of the leaning processhave
the following sequence After the lowest sensor value s,,in
falls below the given limit of s;;,,;; the cllisionis sgnaled
and the agent is displaced to the starting pant. The digibility
traces are set to zero and the episode is continued.

The two important questions are: 1. When is the situation
as dangerous, so that a neural network has to take over the
control of the roba? 2. When does this intervention dsturb
dramaticaly? These questions have strondy influenced the
development.

The balance between the intervention in the leaning process
and the benefit of the aontrol function hes to be right so that
the method can be used. To resolve the previously mentioned
dilemma, several experiments have been acmmplished to
find an appropriate pair of the following parameters. scritical
and Bpiscretisation, Se€figure 4 rows 10 and 14. Thus the
control function is only used, if s,,in € [Stimit; Scritical]-
The leaning process with RL has global information as
basis. Each state will be extraded from odametry data and
represented in the cordinate system of the starting pant.
The answer of the neural network is determined based on
locd information. The atificial neural network provides the
answer to the sensor values. The result is a kind o data
fusion. The control function is approximated by the neura
network with sensor values (locd information) as input. The
locd information can be diff erent althoughthe state from the
agent’s perspedive is the same. The reasons are the use of
different kinds of information, the discretization o the state
space ad the inacarracy of the sensor values, for which the
variable ﬁDiscretisation is r%porﬂbl €.

B. ANN+Sasa(\)-Algorithm

The extension d the basic Sarsa(\) algorithm is depicted
in figure 4. The difference is the aldition o rows 09 to 18
and 32 to 34. Thisblock is used, if the minimum sensor value
Smin = MiN;S1,...,s7 goes below the spedfied sciitical-
In row 11 the answer of the ANN on the sensor values

11

2nd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2009)
St. Louis, Missouri, USA, October 15 2009

(s1,...,87) is taken. The rows 14 — 18 are akind o pro-
jedion d the continuous adion (v, 3) in the discrete adion
space { forwardmovement, turnright, turnleft}. In this
cese it is a continuows adion space but it is projeded into
an ordinary discrete adion spaceby means of the parameter
|ﬁDiscret1ﬁsation-

It has been dedded to use "limited leaning’ instead of an
ANN intervention, see row 13 in figure 4. The Tempora
Difference (TD)-error value §; is st to a mnstant value
TRefiex. 1hat means, if the ANN takes over the cortrol,
the Q-function for the aurrent state and the projeded adion
is determined explicitly independent on the global target
and nd leaned, compare Eg. (1). Hence the gent has no
possbility to lean in the aiticd points.

C. Parameterization o the Extended Method

Two variables are resporsible for the right balance be-

tween the intervention into the leaning process and the
improvement by using an ANN. The parameter scyitical
determines when the ANN s taking owr the control. The
parameter Bp;scretisation 1S resporsible for the projedion o
the adion provided by the ANN in the discrete adion space
T Re flew: OUtPULS Always the same value, so that the egent gets
a catain value & the aiticd points. rrefic, = —5 is more
painful for the egent than ead step (1, = —1), but itisnot
worse than a reward of r.oisi0n = —20. The gratificaion
reward is the value rq,ge¢ = +1000.
The tests have been performed with the following parame-
terss o = 0.2, ¢ = 0.1, vy = 09, A = 0.8. Thisis a
reasonable parametrization. No procedure for the seledion
of these learning parameters has been used.

IV. EVALUATION STRATEGY

The performance of the basic method will be compared

to that of the proposed method by applying bah methods
to the navigation problem in the three previously mentioned
environments. The discretization o al environments was
chosen to be standard Tile Coding (TC). Also the used
reward model was equa in al condwcted experiments.
The balance between the intervention in the leaning process
and the benefit of the aontrol function hes to be right so that
the method can be used. To resolve the previously mentioned
problem, several experiments have been acomplished to
find an appropriate pair of the following perameters:
Soritical AN Bpiscretisation. Tereby two criteria have been
used to compare the performance of the two methodks.

The first criterion is the leaning progress defined as:
1 N
LearningProgressgg := N ; step;

where step; is the average number of steps in the i-th
episode. Acocording to the definition smaller values of this
criterion indicate abetter leaning process In ead episode
in total 30 tests have been condicted. In case of the first
two environments N was chaosen to be 250. In the third
environment it is ¢t to N = 500. The cmputed vaues

of this criterion can be foundin the next sedion in tables |
and 1V.
The second criterionis the average number of wall contads:

N
Wallcontacts = Z Wallcofntactsj
j=1

where Wallcontacts; is the aerage number of wall
contads during ore eisode, in which in total 30 tests
have been condwted. This ensures a cetain dtatisticd
significance. Again in case of the first two environments N
was st to 250, and in case of the third environment to 500.
This criterion was chosen, because asmal number of wall
contads is important in case of a navigation problem. The
computed vaues of this criterion can be foundin tables Il
and V.

To evauate the influence of the ANN on the leaning
progress of the extended method the following third
criterion has been developed. The average number of
network apgications depends on the mnfiguration o the
parameters and is listed in table Il1.

Relative deviations emphasize the positive or negative
influence of the extension with an ANN in comparison to
the standard algorithm. The deviation value is caculated
with Deviation = (1 — {mberparamerers)y 4 100%,
LearningProgress as well as WallContacts are inserted
instead of number for eat parameter combination.

V. RESULTS

In the following the results for two simple environments,
seefigure 1 and 5 and ore more complex environment are
presented. A part of the complex environment is shown in
figure 6. In al experiments ore tiling hes been used. In
environment 1 and 2 the tiling has 10 x 10 x 24 tiles, in
environment 3 the tiling has 49 x 39 x 24 tiles.

Intable | the leaning progressis listed for diff erent parame-
ter sets, SCritical € {157 207 257 307 35} and ﬂDisc’r'ctisation €
{1,2,...9}. In the lower part of table | relative deviations
arelisted in relation to the basic method The tests have been
performed in environment 1.

A vaue of 25 of the parameter scriricar results in
a positive impad for al vaues of the parameter
BDiscretisation- 1he best combination for the tested parame-
ters (30riticalaﬂDiscretisation) is (257 6) This combination
results in an improvement of more than 20% for the seleded
criterion, the leaning progress in comparison to the basic
method

The results for the second criterion, the average number of
wall contads, are listed together with the relative deviations
intablell. The parameter value s¢piticai = 30 shows the best
results with improvements between 6% and 76%. But the
best parameter combination for the leaning progress (25, 6)
provides aso a relative high reduction o wall contads per
episode of 59 %. The improvement of the leaning progress
is much higher for the parameter combination (25,6) than
for any parameter combination with a scprizicar Of 30 with

12

2nd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2009)
St. Louis, Missouri, USA, October 15 2009

TABLE |
LEARNING PROGRESS (AV ERAGE NUMBER OF STEPS) FOR ENVIRONMENT 1 FOR DIFFERENT PARAMETER SETS. COLUMNS: VARYING PARAMETER
BDiscretisation BETWEEN 1 AND 9. ROWS: VARYING PARAMETER SCritical BETWEEN 15 AND 35. LOWER PART: RELATIVE DEVIATION TO THE
BASIC METHOD

1 2 3 4 5 6 7 8 9
standard 38631 38631 38631 38631 38631 38631 38631 38631 38631
15 40457 42348 39176 37732 37620 37400 35654 40555 38569
20 45871 40655 41748 45170 41866 42697 44628 42227 43091
25 36254 34469 32513 33365 31466 30191 33654 33489 31372
30 41517 38520 41787 41152 36950 37783 38647 38090 36578
35 119059 69074 79455 78361 104550 104623 179596 69666 79050
standard 0% 0% 0% 0% 0% 0% 0% 0% 0%
15 -4.72% -9.62% -1.41% 2.32% 2.61% 3.18% 7.7% -4.97% 0.15%
20 -1874% -5.23% -8.06% -16.92% -8.37% -10.52% -15.52% -9.3% -11.54%
25 615% 10.77% 15.83% 13.63% 1854% 21.84% 12.88% 1331% 18.78%
30 -1.47% 0.28% -8.16% -6.52% 4.35% 2.1%% -0.04% 1.4% 5.31%
35 -20819% -788% -10567% -10284% -17063% -17082% -3648% -80.33% -10462%
TABLE I

NUMBER OF COLL ISIONS WITH OBJECTS (WALL CONTACTS) FOR ENVIRONMENT 1 FOR DIFFERENT PARAMETER SETS. COLUMNS: VARYING
PARAMETER fpiscretisation BETWEEN 1 AND 9. ROWS: VARYING PARAMETER S(yiticql BETWEEN 15 AND 35. LOWER PART: RELATIVE DEVIATION
TO THE BASIC METHOD

1 2 3 4 5 6 7 8 9
standard 391 391 391 391 391 391 391 391 391
15 47 485 433 421 418 417 404 433 418
20 494 443 46 5.02 469 465 494 473 463
25 191 18 165 175 156 16 172 169 158
30 119 103 114 107 095 097 101 101 093
35 139 116 121 13 138 128 173 116 132
standard 0% 0% 0% 0% 0% 0% 0% 0% 0%
15 -2002% -2383% -10.7% -7.65% -6.85% -6.43% -3.16% -1067% -6.89%
20 -2631% -1319% -17.61% -2813% -1987™% -1878% -2613% -2077% -1831%
25 511% 5398% 57.73% 5524% 6008% 59.02% 5591% 56.73% 59.55%
30 6957% 73.7% 7065% 7265% 7551% 7508% 7413% 739% 76.02%
35 6431% 7023% 6888% 665% 6466% 6711% 557% 7037% 66.23%
TABLE I

NUMBER OF ANN APPLICATIONS FOR ENVIRONMENT 1 FOR DIFFERENT PARAMETER SETS. COLUMNS: VARYING PARAMETER Bpjscretisation
BETWEEN 1 AND 9. ROWS: VARYING PARAMETER SCitical BETWEEN 15 AND 35.

1 2 3 4 5 6 7 8 9

standard 0 0 0 0 0 0 0 0 0

15 233 237 218 21 22 215 2 233 22
20 1678 1514 1548 1661 1538 1587 1616 1542 1588
25 333 3149 3075 3033 2912 2938 3125 3114 2892
30 5399 5075 5439 5281 4846 493 5004 4942 4814
35 1036 9419 9463 947 100 10088 11584 9195 9719

TABLE IV

LEARNING PROGRESS (AV ERAGE NUMBER OF STEPS) FOR ENVIRONMENT 2 FOR DIFFERENT PARAMETER SETS. COLUMNS: VARYING PARAMETER
BDiscretisation BETWEEN 1 AND 9. ROWS: VARYING PARAMETER SCitical BETWEEN 20 AND 30. LOWER PART: RELATIVE DEVIATION TO THE
BASIC METHOD

1 2 3 4 5 6 7 8 9
standard 44494 44494 44494 44494 44494 44494 44494 44494 44494
20 47383 48211 45629 53506 49575 47724 52353 48417 48727
25 43958 43154 41776 4188 43189 47048 47477 47002 44654
30 57474 56071 46158 65046 897 87291 55576 60173 86305
standard 0% 0% 0% 0% 0% 0% 0% 0% 0%
20 -6.49% -835%% -255% -2025% -1142% -7.25% -17.66% -8.81% -9.51%
25 12% 3.01% 6.1% 5.87% 2.93% -5.73% -6.7% -5.63% -0.36%
30 -2917% -2601% -3.74% -4619% -1016% -9618% -249% -3523% -9397%

13

2nd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2009)
St. Louis, Missouri, USA, October 15 2009

TABLE V
NUMBER OF COLLISIONS WITH OBJECTS (WALL CONTACTS) FOR ENVIRONMENT 2 FOR DIFFERENT PARAMETER SETS. COLUMNS: VARYING
PARAMETER Bpjscretisation BETWEEN 1 AND 9. ROWS: VARYING PARAMETER SCritical BETWEEN 20 AND 30. LOWER PART: RELATIVE DEVIATION
TO THE BASIC METHOD

1 2 3 4 5 6 7 8 9

standard 435 435 435 435 435 435 435 435 435

20 602 585 576 659 612 541 625 595 586

25 381 36 325 333 311 392 372 366 32

30 197 199 183 205 202 207 182 217 207

standard 0% 0% 0% 0% 0% 0% 0% 0% 0%
20 -3841% -3454% -3234% -5143% -4063% -2427% -4364% -3668% -346%%
25 124% 1715%% 2525% 2349% 2856% 9.77% 1446% 158% 2647%
30 5465% 5425% 57.83% 52.7% 5346% 5237% 581%% 50% 52.35%

a the same time asimilar reduction o wall contads.
Ancther influence aiterion is shown in table Ill. The
number of ANN applications for different parameter sets.
The oorrelation is not surprising. The higher the parameter
Scritical 1S, the more often the ANN is used. The parameter
BDiscretisation N8S NO significant impad on the number of
ANN applications.

To verify the general correlations the tests are performed for
different parameter sets in another environment, see figure
5. The results for the leaning progressare listed in table 1V
and the results for the number of wall contads are listed in
table V. A smaller parameter range can be chosen, since for
the parameter scyiticqr the values 20 and 35 showed negative
results in previous experiments. A parameter of scriticar =
25 showed dso in this environment 2 the best results for
the leaning progress But the best value for the parameter
BDiscretisation NS hifted. The reason could be the high
number of angles in this environment. A finer projedion
is needed in the discrete adion space For the parameter
set (25,5) the leaning progress has been improved by
3%. But for the parameter set (25,6) the agent showed a
leaning progress which is worse by 6%. The number of
wall contads is also higher in comparison to environment
1. But there is gill an improvement of almost 30% using
the parameter set (25,5), see table V. To understand the
influence of the different parameter values on the leaning
progress several correspondng curves have been plotted in
figure 7. The red curve shows the leaning progressusing the
basic method in the environment shown in figure 1. Starting
with the initial value of 10000, maximal possble steps in
one isode, it deaeases gegly down to a value of 63
after the 20-th episode. Between the 20-th and the 250-th
episode there is amost no improvement. The green, blue
and violet curves how the leaning progressof the proposed
method for different parameter values. The green curve with
the parameters scritical = 20 and ﬂDisc’r'etisation = 5 shows
a similar development to that of the basic method however
in contrast to the basic method the number of steps darts
to deaease ealier. The similarity evolves from the fad that
becaise of the chosen scyirica; the impad of the ANN on
the leaning processis too small. After its adivation it does
not have much elbowroom to move the roba away from

the wall. As mentioned abowe, if the distance to the wall is
smaller than symit, SO Smin < Siimit := 15 a allision is
signaled and the agent is placel to the starting pant again.
However, other parameter sets of the proposed method lead
to different developments of the leaning curves. With the
greder values of the parameter sc.iticar, the adivated ANN
if Smin < Scriticat N& mMuch more impad on the leaning
process As shown by the blue and violet curve the roba
arealy readies its target during the first episodes. Moreover
it neals from the beginning lessthan 4000 steps to read the
target.

Considering this figure ageneral trend can be identified. The
higher the value of the parameter scyiticar 1S, the less seps
are needed for the ggent to read its target during the first
episodes. The overall shape of the correspondng curves also
becomes more complanate. Thus an appropriate impad of the
ANN on the leaning processleals to a 20% better leaning
progress But the disadvantage of the proposed method can
aso be observed in figure 7. The minimum number of
required steps in ore eisode is readed later than using
the basic method The conclusion is, that the roba leans
faster in the first few episodes. But it leans dower in the
subsequent episodes.

In figure 8 the number of wall contads is plotted ower
the episodes. Again the different curves correspond to the
results of the basic method and the propased method with
different parameter sets. After the 15th episode dl curves
show a similar development. However in the first episode
the basic method and the proposed method parameterized
with Scritical = 20 and ﬁDiscrctisation =5 produ:e more
than 200 wall contads. This grealy effeds the agents hedth.
Much better are the results presented by the blue and violet
curves. By applying the aorrespondng methods to the red
roba, its probability to survive is much greder, since less
wall contads have to be endured.

The oorrelation between the number of ANN applications
and the number of wall contads depending onthe number of
episode is hown in figure 9 for a parameter combination o
(SCrv',tical = 25, 6Discret1lsation = 5) Both curves have been
scded to the same level to pant out the similar progress The
reason is that the number of situations, in which the ANN
does nat help is fixed. The result is a ollision with a wall

14

2nd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2009)
St. Louis, Missouri, USA, October 15 2009

01 Initialize § arbitrarily

02 Repea (for ead episode):

03 ¢&=0

04 s,a < initid state and adion o episode

05 F, <« set of fedures present in s

06 Repeda (for ead step of episode):

07 For dl i € Fi:

08 Eali) «— €a(3) + (i)

09 Smin < M|N(81, S92, 87)

10 if Smin < SCritical

11 a' = (B,v) «— ANN(sy, s, ...87)

12 Take adion o/, observe reward r,
and rext state, s’

13 0 — TReflex

14 if ‘ﬁ‘ < ﬂDiscretisation

15 a «+ forward movement

16 else

17 if 6>0
a < turn right

18 else a « turn left

19 else

20 Take adion a, observe reward r,
and rext state, s’

21 6 =1 =3 cr, ba(i) - 95(9)

22 With probability 1 — e:

23 For al a € A(s'):

24 Qo — quej-‘s, ea(i)¢s’(i)

25 a <+ argmax, (),

26 ese

27 a < arandam adion € A(s)

28 Fy «— set of fedures present in s’

29 Qo — Zig}‘s, ea(i)¢s’(i)

30 0 —0+vQq,

31 0 — 6 + adé

32 if Smin < SCritical

33 € YAE

34 dsec—0

33 5+ s

34 uril s istarget

Fig. 4. Algorithm of the proposed ANN+Sarsa(\)-Method with e-greedy
pdlicy. The difference is the adition o rows 09 to 18 and 32 to 34. In
row 11 the ANN gives the answer on the sensor values (s1,. .., s7). The
rows 14 — 18 are akind d projedion o the mntinuows adion (v, 3) on
the discrete adion space{ forwardmovement, turnright, turnleft}.

L Target

Start @

Fig. 5. Simple environment 2 for the verificaion o the optima parameter
sets

Target
l
|| L
j =l
L] —N —
L/*] J

Start

Fig. 6. Complex environment 3 for verification o the optima parameter

sets
6000
5000
[
e}
3 4000
o
w
g 3000
12
o
&
(2]

1000 F

2000

basic method
SCriticaIfZO! bm%iseretisatiorf5
Scritical= 21 D€Bjscretisation
sCriti::aI‘3 » betBiscretisation

20 40 60 80 100
Episodes

Fig. 7. Leaning curves for the proposed methodwith 3 dff erent parameter
sets and the basic method in environment 1

200

150

100 |

Number of wall contacts

50

basic method
SCriticalle(JY bm%iscretisatiorf 5
SCrilical:z » be '5iscrelisatiorI
Scritica™3Ys be Biscretisatiom

e L T

5 10 15 20 25
Episodes

Fig. 8. Number of wall contads resulted by the basic method and the
proposed method with different parameter sets in environment 1

15

2nd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2009)
St. Louis, Missouri, USA, October 15 2009

500 : . . — .
ANN applications
” A Wall contacts
S 400 ‘E {20 &
© 1 o]
£ i =
g | 8
& 300} tA °
z " g
Z \ b
<< \ [S)
5 200 % 110 3
2 £
E 2
2 100}
YNAA
0 , , , '\/V.\"\-q——- 0
0 10 20 30 40 50 60 70
Episodes
Fig. 9. Number of ANN applicaions and number of wall contads
depending on the episode for the parameter set scriticar = 25,
ﬁDiscTetisation =5 in environment 1
4000 — .
Learning curve
3500 | ANN applications "
S
[3000 T
3 2
2 2500 g
i}
o z
g 2000 z
[%] “—
& 1s00f >
) 2
1000 E
z
500
0 . . . ;
0 10 20 30 40 50 60 70
Episodes
Fig. 10. Number of required steps per episode aad number of ANN

appli cations depending onthe episode for the parameter set scritical = 25,
BDiscretisation = D iN environment 1

and a similar profile of the aurves. The leaning curve and
the progress of the number of ANN applicaions are shovn
in figure 10. The profile of bath curves is also similar. The
more seldom dangerous stuations occur during the episodes,
the more seldom the ANN is used, and the faster the agent
readed histarget. The progressof the threevalues number of
steps to target, number of ANN applicaions and number of
wall contadsis very similar. The ébove described results are
corfirmed for the more complex environment 3, see figure
11 The leaning progress is hown for the basic method
and two sets of parameters SCritical = 25a ﬁDiscretisa,tion =
6 and SCritical = 2555Discretisation = 5. The omlmal
parameters have been determined in previous experiments.
The aent with the proposed method reades the target
arealy in the first episode like in environment 1. The agent
with the basic method readies the target beginning with the
80th episode. But then it leans faster. The average number
of succes<ul target achievements is listed in table VI. The
proposed method enables the agent to read the target 430
and 439 times respedively out of 500 trials (episodes).
The agent with the basic method reades the target 417
times averaged over 30 experiments. The progress for the

20000 ST, — T
oeese ™ W o basic method «
st Ne .";?Criticalfzs! b(:"téiscretisatiorf5
LT e T Sritical= e etBjiscretisation .
) 15000 il
° .
8 . o, .
a 2,
w S eea’s
— &
¢ 10000 b
a > P
Q o® O oy
%} =
5000 | N
»
-~
0 .
0 50 100

Episodes

Fig. 11. Number of required steps to target depending onthe episode in
environment 3

200

basic method
SCriticaIfZS! bm@iscretisatiorf5
SCritica\l_2 » PetBjiscretisation

Number of wall contacts

0 20 40 60 80 100 120 140
Episodes

Fig. 120 Number of wall contads depeding onthe episode in environment
3

number of wall contads from one euisode to the next one
in environment 3 is dmilar to the simple environment 1, see
figure 12.

V1. CONCLUSION

A new method hes been proposed which alows the
integration o additional context knowledge in the lean-
ing process The proposed method hes been tested for a
navigation problem. The extension with context knowledge
resultsin afaster leaning. The method wses aneura network
additionally to the standard Sarsa()\) agorithm to avoid
agent collisions with the surroundng olstades. The neural
network starts working orly if the adual state of an agent
was reagnized as dangerous. In the remaining situations the
usua Sarsa(\) agorithm is used.

Several parameters are used to control the influence of the

TABLE VI
NUMBER OF SUCCESSFUL TARGET ACHIEVEMENTS IN 500 TRIALS
(EPISODES), AVERAGE OUT OF 30 EXPERIMENTS

basic method 417.063
Propcsed method (25, 5) 439476
Propcsed method (25, 6) 430571

16

2nd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2009)
St. Louis, Missouri, USA, October 15 2009

ANN. Different parameter sets lead to different results. A
very frequent application d an ANN yields on the one
hand to a very low wall contad rate. On the other hand
no improvements but disturbances of the overal leaning
processcan be observed. Thus sveral experiments have been
condicted to oltain optimal parameters for the three exam-
ined environments. Thereby the aowve described dilemma
was lved: using the estimated parameters the impad of
the neural network was afficient to improve the leaning
progress and to reduce the number of wall contads to an
acceptable minimum.

Because of the enhanced convergence of the learning process
less computational power is required to oltain a suitable
solution. Thereby the presented method can also be goplied
to a more complex environment.

REFERENCES

[1] J. S. Albus, Brains, Behavior, and Robatics, BY TE Books, Peterbor-
ough 1981

[2] Reinaldo A. Bianchi, Carlos H. Ribeiro, and Anna H. Costa, ‘Accd-
erating autonamous leaning by wsing heuristic seledion o adions’,
Journa of Heuristics, 14(2), 135-168 (2008.

[3] Y. Kasshun Towards a unified approach to leaning and adaptation,
2006

[4] T. Kopsel, A. Noglik, and J. Pauli, ‘Evolutionare dgorithmen zur
topdogieentwicklung von reuronalen netzen fiir die robaer-navigation
im praktischen einsatz’, in Autonome Mobhile Systeme 2007, ed.,
T. Luksch K. Berns, Informatik aktuell, pp. 145-151 Berlin, (2007).
Springer-Verlag.

[5] A. Noglik, M. Miller, and J. Pauli, ‘Applicaion o a Heuristic Func-
tion in Reinforcement Leaning, in Hybrid Control for Autonamous
Systems Integrating Learning, Deliberation, and Reactive Control, pp.
41-48 (2009.

[6] S. Papierok, A. Nodlik, and J. Pauli, ‘Application o Reinforcement
Leaning in a Red Environment using RBF Networks', in Proceal-
ings of the Internationd Wbrkshop on Evolutionary Learning for
Autonamous Roba Systems, pp. 17-22 (Juli 2008.

[7] G. A. Rummey and M. Niranjan, ‘On-line g-leaning wsing conrec
tionist systems, Technicd report, Cambridge University Engineaing
Department, (1994.

[8] A. A. Sherstov and P. Stone. Function approximation via tile aoding:
Automating parameter choice Department of Computer Sciences,
University of Texas at Austin, 2005

[9] S P.Singhand R. S. Sutton, ‘Reinforcement leaning with repladng
eligibility traces’, Machine Learning, 22, 123-158 (1996.

[10] K. O. Stanley and R. Miikkulainen, ‘ Evolving neural networks through
augmenting topdogies’, Evolutionary Computation, 10(2), 99-127
(2002.

[11]] R. S. Sutton, ‘Integrated architectures for leaning, planning, and
reading based on approximating dyramic programming’, in ML, pp.
216-224 (1990.

[12] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion, The MIT Press Cambridge, Massachusetts, 1998

[13] S. Whiteson and P. Stone, ‘Evolutionary function approximation for
reinforcement leaning', Journa of Machine Learning Research, 7,
877-917 (May 2008.

17

2nd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2009)
St. Louis, Missouri, USA, October 15 2009

18

2nd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2009)
St. Louis, Missouri, USA, October 15 2009

Using Joint Probability Densities for Simultaneous Learning of Forward and
Inverse Models

Mark Edgington, Yohannes Kassahun and Frank Kirchner
Robotics Group
University of Bremen
28359 Bremen, Germany
{edgimar, kassahun, frank kirchner} @informatik.uni-bremen.de

Abstract—In this position paper we propose that in many
cases, instead of using standard regression methods for directly
capturing relationships between variables, joint probability
density estimates can and should be used for this purpose.
With a good joint probability density estimate, any relationship
which exists between variables can be extracted in the form
of a regression function. Depending on the chosen density
estimate representation, a regression function can be derived
with relatively little computational effort. In essence, this means
that by learning a joint probability density, both forward and
inverse models have been captured. This method of learning
the relationships between variables is demonstrated through a
series of experiments.

I. INTRODUCTION

It is common in a wide variety of scenarios to make use of
regression methods, ranging from basic linear regression to
more flexible variants such as Gaussian Process Regression
(GPR). The common goal behind each of these methods is
to learn an accurate and general mapping from some random
input vector X to a random output vector Y. To learn this
mapping, X—Y, a regression method would operate on a
set of training examples (Z;, ¥;), resulting with a regression
function ¥ = h(Z). If one wants, however, to invert this
function (assuming an inverse exists over some desired range
of i values), and obtain the function & = h~1(j), the
regression method must typically be re-applied to a set of
training examples in which &; and ¢; are swapped.

This illustrates one of the weaknesses of a regression-
only approach to learning associations between variables:
the learned relationship is unidirectional. We believe that a
powerful technique for overcoming this limitation involves
the combination of probability density estimation and regres-
sion.

Formally, a regression function is defined in probabilistic
terms as the expected value of some random vector, given a
specific value of a different random vector:

y=hz) =E[Y|X =] Q)

If the representation of the joint probability density by which
these random vectors are distributed is appropriately chosen,
the calculation of this conditional expectation is relatively
inexpensive, and can be a viable alternative to standard re-
gression methods that directly estimate a regression function
from training examples.

19

As a simple example, if we have two random variables,
U and V, which we wish to know the relationship between,
we can estimate the joint probability density fy v (u,v) by
any number of density estimation techniques. In so doing,
the relationship between these variables has been captured,
and one can calculate either of the two possible regression
functions

w=h(w) = E[U |V =] = /ufUW(u W du, Q)

v="h"Yu)=E[V|U =]

/'vaw(v wdv 3)

where the relationship between a conditional density function
and a joint density function can be written as

_frx(y.a)
ffYX Y, x dy'

Equations (2) and (3) are equally valid when U and V' are
random vectors.

We have successfully applied this approach to a number
of problems. The probabilistic representation we use, which
we have called the Dynamic Gaussian Mixture Model, is
introduced in the next section. Following this, a method
based on work done by Sung is presented which is used for
deriving regression functions from a joint probability density
[1]. Finally, we report on the results of three problems to
which this regression technique has been applied.

fyix(ylz)= 4)

II. DYNAMIC GAUSSIAN MIXTURE MODEL

We have developed a set of learning algorithms for online
and offline density estimation using an extended version of
the standard Gaussian Mixture Model. This extended model
is called a Dynamic Gaussian Mixture Model (DGMM)
because of the way in which the number of Gaussian
components in the model can vary dynamically to effectively
capture the relevant features of an estimated joint probability
density.

A DGMM represents a density function p(Z), as a
variable-sized set of “weighted Gaussian” pairs,
G = {(91(7), w1), (92(7), w2), - - -, (g (T), wm)},
such that m
= iigi(#), 5)
i=1

2nd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2009)
St. Louis, Missouri, USA, October 15 2009

where ¢;(Z) is a multivariate Gaussian distribution:

g:(@) = £ (@) ~ N (i, 20), (©)

and .
Wi =w; /Y w. (7)

k=1

While the online estimation algorithm is discussed in detail
in the context of robot motion modelling in [2], we use
an offline algorithm for the experiments presented in this
paper. Briefly, the offline method that was used involves
generating Gaussian components for each training example,
and subsequently smoothing the model through a merging
process in which pairs of similar Gaussians are merged into
a single representative Gaussian.

III. DGMM BASED REGRESSION

In order to calculate a regression function from a DGMM
density representation, a method called Gaussian Mixture
Regression (GMR) proposed by Sung was used [1]. It is
a direct application of (1) to GMMs, taking advantage of the
elegant mathematical properties of the Gaussian function.
By using Gaussian functions as mixture components, the
calculation of marginal and conditional probabilities required
for the regression function becomes trivial, requiring little
computational effort.

IV. EXPERIMENT AND RESULTS

A. Simultaneous Learning of the Forward and Inverse Mo-
tion Models of the SCORPION robot

Learning the motion model of legged robots is challeng-
ing due to the complex kinematics of the robot and the
complexity of the interaction it makes with the environment
during locomotion. Initial experiments were performed with
the SCORPION robot [3] to test the extent to which a joint
probability density of poses and commands could capture
the robot’s forward and inverse motion models. The pose
of the robot was measured using a motion capture system
installed in our laboratory. The experimental environment
is a horizontal laboratory floor surface. The pose of the
robot includes the Cartesian coordinates (z,y) and heading
of the robot 6. The robot’s command space is the Cartesian
product Cr = F x L x T, where FF = {-0.8,0,0.8},
L = {-038,0,0.8} and T" = {-0.8,0,0.8}. The set F
stands for forward-backward movements with the maximum
and minimum values of 1 and -1 respectively, and the set L
stands for lateral left-right movements with the maximum
and minimum values of 1 and -1 respectively. Similarly,
the set T' stands for left-right rotations with the maximum
and minimum values of 1 and -1 respectively. We sent
the SCORPION robot random commands from the command
space Cr and recorded the changes in pose of the robot.
In the experiment, we gave equal probabilities to all of the
commands, and on average each command is repeated (non-
consecutively) five times on the robot. We then built a joint
probability density over (command, change in pose) tuples.

20

1) Extracted Forward Motion Model: In order to validate
the learned joint probability density, we first extracted the
expectation function of the change in pose given a command.
The function was then used to estimate the pose of the
robot over 50 timesteps in a separate experiment to assess
its prediction quality. The expectation function represents the
learned forward model. Figure 1 shows the result we obtained
after we used this motion model to estimate the robot’s pose.
From the figure, it can be seen that the forward motion model
predicts the robot’s position relatively well.

Pose in X direction vs. time steps
T

true position of the robot —
1009 estimated position of the robot e
£-200
E
=
£-300
]
£
> -400
£
2
£-500 -
600
-700 . . : .
0 10 20 30 40 50
Time stens
(a)
Pose in Y direction vs. time steps
200 T T
A true position of the robot —
o J :‘EP‘\, estimated position of the robot ---o--
® £y
~ ¥
£ -200 | |
g
=
£ 400 F ,
g
£
= 600 -]
8
2
£ 800 1
-1000 - B

-1200

20 30 40
Time steps

(b)

Heading vs. time steps
T T

50

true grientation of the robot — |
/'y

estimated £
[

entation of the robot - |

. . .
20 30 40
Time steps

(©)

10 50

Fig. 1. Performance of the motion model in estimating the pose of the
SCORPION robot on a flat surface: (a) pose estimation in the x-direction vs.
timesteps. (b) pose estimation in y-direction vs. timesteps, and (c) heading
estimation vs. timesteps.

2) Extracted Inverse Motion Model: The inverse motion
model was also extracted from the learned joint probability
density. It maps the change in robot pose to a command to be

2nd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2009)
St. Louis, Missouri, USA, October 15 2009

sent to the robot. This model was used to control the robot in
a closed loop manner to traverse a figure-8 shaped trajectory.
Waypoints were sampled from the trajectory and the nearest
waypoint to the current position of the robot was used to
calculate the necessary change in pose. The inverse motion
model was then used to determine which command to send
to the robot, given the necessary change in pose. Figure 2
shows the results of using the inverse motion model in this
way for trajectory following. As can be seen in the figure, the
robot is able to follow the trajectory reasonably well. Along
the target trajectory where the curvature is high, the robot
tends to execute commands having larger rotational effects.

Trajectory Plot

1,000
500 f;,-w-tw’ 2
= /
E x=0
A T
|
>
\
\
/
-500 — ¥ ‘/
-1,000
—— T T T
-600 -400 -200 0 200 400 600
X —> (mm)

= RobotPath — RobotHeading — Trajectory

Fig. 2. The inverse motion model used in trajectory following. The figure
shows the robot while following a trajectory, and the arrow in the figure
shows the current orientation of robot.

B. Performance of DGMM on Classification and Prediction
Problems

We have further tested the DGMM/GMR method in the
areas of classification and prediction, using the Two-Spiral
and Mackey-Glass time-series standard benchmark problems,
respectively.

1) Two-Spiral Benchmark: The standard Two-Spiral
benchmark was chosen to investigate the performance of the
method on classification problems [4]. In this experiment,
we learned the joint probability density function of the coor-
dinates of a point on a spiral (z,y), and the class defined by
the spiral on which the point lies. Since there are two spirals,
a boolean integer in the set {0,1} is used to represent the

21

class. A regression function E[C|X = z,Y = y] is extracted
form the joint probability density, where C' is a continuous
value random number. The output of the regression function
is thresholded to determine the class of a point at the
coordinates (z,y). Starting with Gaussians centered at each
point and associated class, the merging procedure is run a
number of times until the minimal number of Gaussians that
resulted in a regression function with error free classification
is obtained. Figure 3 shows the Gaussians of the joint
probability density fx y(z,y) after the merging procedure
was applied and the class variable is marginalized out. The
ellipses represent equi-probability contours of the Gaussians
used to form the joint probability density fx y(x,y). Note
that each Gaussian has its own weight and the weighted sum
of the Gaussians represents the joint probability density given
by
M
[xy(z,y) = Zﬁ)zﬁbi, ®)
i=0

where M is the number of Gaussians in the mixture, w; is
a mixing coefficient and ¢; is a Gaussian N '(u;, ;). This
initial test of the DGMM/GMR method on this classification
problem suggests its suitability for classification tasks.

Fig. 3. Density estimation results on Two-Spiral benchmark. Each ellipse
represents an equi-probability contour of a Gaussian component of the joint
probability density fx y (z,y).

2) Mackey-Glass Time Series Benchmark: An experiment
described in [5] using the chaotic Mackey-Glass equation
was performed with the DGMM/GMR method to investigate
the suitability of the method for prediction problems. The
task is to predict the time series given by

ba(t — 1)
1) =(1-— _
s(t+1) = (1= a)a(t) + o ©)
where a = 0.1, b = 0.2, 7 = 17 and 2(0) = 1.2.

The function to be approximated has the form z(¢ + 6) =
flz(@),z(t — 6),2(t — 12),2(t — 18)). The DGMM/GMR

2nd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2009)
St. Louis, Missouri, USA, October 15 2009

method is trained on 1000 samples of f where 124 <
t < 1123, and validated on another 1000 samples of f
where 1124 < ¢t < 2213. Again, the joint probability
density is learned first, and afterwards a regression function is
extracted from the joint probability density that approximates
the function f. Figure 4 shows the performance of the
DGMM/GMR method in predicting the sequence for the
validation set.

14

true valug,—
H .
l | priidictedtvalud|-— |

12 |

0.8

Output

0.6

0.4

0.2

L L L
400 600 800

Time steps

L
200 1000

Fig. 4. Prediction performance of the DGMM/GMR method on the
Mackey-Glass benchmark. The line with points represents the trajectory
generated using this method.

V. DISCUSSION

Though the computational requirements of the
DGMM/GMR approach have not been addressed in
this paper, the experiments presented have shown that
the approach is a viable alternative to standard regression
methods in typical application domains. By learning a joint
probability density as an intermediate step to deriving a
regression function, every observable relationship between
variables is captured, regardless of its causality or lack
thereof. This makes the joint probability density flexible
in the ways it can be used, in contrast to a regression
function, which only represents a single relationship
between variables.

In the future, we will provide an in-depth analysis of the
presented experiments, further validate the DGMM/GMR ap-
proach on different robot learning scenarios, and compare its
computational requirements with those of standard regression
methods.

ACKNOWLEDGMENT
This work was supported by the German Science Founda-
tion (DFG) under contract number SFB/TR-8 (A3).
REFERENCES

[11 H. G. Sung, “Gaussian mixture regression and classification,” Ph.D.
dissertation, Rice University, 2004.

22

[2] M. Edgington, Y. Kassahun, and F. Kirchner, “Dynamic motion mod-
elling for legged robots,” in Proc. of the IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS), St. Louis, MO, USA, 2009,
accepted.

B. Klaassen, R. Linneman, D. Spenneberg, and F. Kirchner,
“Biomimetic walking robot SCORPION: Control and modeling,”
Robotics and Autonomous Systems, vol. 41, no. 2, pp. 69-76, 2002.
S. E. Fahlman and C. Lebiere, “The cascade-correlation learning
architecture,” in Advances in Neural Information Processing Systems
2. Morgan Kaufmann, 1990, pp. 524-532.

L. C. Kiong, M. Rajeswari, and M. V. C. Raoa, “Extrapolation detection
and novelty-based node insertion for sequential growing multi-experts
network,” Applied Soft Computing, vol. 3, no. 2, pp. 159-175, 2003.

(3]

(4]

(5]

2nd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2009)
St. Louis, Missouri, USA, October 15 2009

Compiling Neural Networks for Fast Neuro-Evolution

Nils T Siebel, Andreas Jordt and Gerald Sommer

Abstract— Any neuro-evolutionary algorithm that solves
complex problems needs to deal with the issue of computational
complexity. We show how a neural network (feed-forward,
recurrent or RBF) can be transformed and then compiled in
order to achieve fast execution speeds without requiring ded-
icated hardware like FPGAs. In an experimental comparison
our method effects a speedup of factor 5-10 compared to the
standard method of evaluation (i.e., traversing a data structure
with optimised C++ code).

I. INTRODUCTION

The use of Artificial Neural Networks (also simply “neural
networks™) for robotics is difficult. While neural networks
have been the object of research for several decades, there
is still no straightforward way to construct a neural network
that solves a given robotics task. In many cases creating a
good network requires a great deal of domain knowledge
and manual intervention, e.g. to determine the network’s
topology (“structure”), or to adjust the parameters of one’s
learning algorithm (“hyperparameters”) to the given problem
and data. Even with manual intervention and tuning, this may
still be difficult or impossible if the problem is non-trivial.

Much of the past research work has been solely on learning
the parameters of a neural network; there are few construc-
tive algorithms for a neural network’s fopology. Also, once a
topology is found the search for optimal parameters is a dif-
ficult due to numerical ill-conditioning [1] and the so-called
“curse of dimensionality” [2]. Recent neuro-evolutionary
mehods aim to overcome these problems by evolving both
the structure and the parameters of neural networks by
evolutionary algorithms [3], [4], [S], [6]. Evolutionary algo-
rithms are known for their good convergence even in difficult
optimisation problems, and successful networks have been
constructed by these methods (idib.). However, their main
disadvantage is one inherent in all evolutionary methods:
They require many trials (and thereby, evaluations of the
neural network) to find a solution to any non-trivial problem.

In this article we present a method to speed up the
evaluation of neural networks by first transforming them
into a form that requires no branching, then compiling it
into binary machine code (32- or 64-bit x86 architecture
using SSE). The compiler works for feedforward, recurrent
and radial basis function (RBF) networks, or any hybrid
network composed of these components. The code does
not require re-compilation if only network parameters are

N.T. Siebel and G. Sommer are with the Cognitive Systems Group, Insti-
tute of Computer Science, Christian-Albrechts-University of Kiel, Germany.
E-Mail: {nts, gs}@ks.informatik.uni-kiel.de.

A. Jordt is with the Multimedia Information Processing Group, Institute
of Computer Science, Christian-Albrechts-University of Kiel, Germany. E-
Mail: jordt@mip.informatik.uni-kiel.de.

23

changed, which speeds up the search for optimal parameters
without the need to re-compile the network.

The remainder of the article is organised as follows.
Section II introduces the terminology and describes related
work. Details on our neuro-evolutionary method EANT?2 can
be found in Section III. The neural network compilation
approach is described in Section IV and validated by ex-
periments in Section V. Section VI concludes the article.

II. PRELIMINARIES AND RELATED WORK
A. Neural Network Learning Paradigms

An artificial neural network can be regarded as a function
f that maps data points/vectors x from an input space
X C R" to vectors y in an output space ¥ C R™,
ie. f: X =Y, x — y. For a neural network with a fixed
topology this function f is parameterised by the parameters
of the network, e.g. the values of synaptic weights. Training
a neural network means to optimise these parameters such
that the network is suitable for a given task. For this the
optimisation process needs a measure of this suitability of
given parameters, usually expressed by an error or cost
function which is to be minimised during training. The
main training/learning paradigms for neural networks are
supervised learning, unsupervised learning and reinforcement
learning.

1) Supervised Learning: Here a set of example data pairs
{(zi,yi) }i» xi € X,y; €Y Vi, is given. The goal is to find a
function f : X — Y (here, a neural network) that describes
the mapping implied by the data points. The cost function is
related to the mismatch between our mapping and the data.
In classification problems, y; is the label of the point x;.

The most commonly used cost function is the mean-
squared error (MSE), i.e. the mean squared difference be-
tween the network’s output, f(z;), and its target value
y;, over all example pairs. A popular algorithm for the
minimisation process is the backpropagation algorithm [7,
chap. 4], which is essentially optimisation by stochastic
gradient descent.

2) Unsupervised Learning: As in the supervised case, we
are given data examples {x;};, but not as pairs {(z;,y;)}:.
One form of unsupervised learning is clustering, further
examples are the estimation of statistical distributions of data
and blind source separation (e.g. based on Independent Com-
ponent Analysis, ICA). Examples for unsupervised learning
approaches by neural networks are Self-Organising Maps
(SOM) and Adaptive Resonance Theory (ART) systems.

3) Reinforcement Learning: In reinforcement learning
scenarios, data x is usually not given. Instead, the algorithm
evaluates a candidate solution by direct interaction with the

2nd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2009)
St. Louis, Missouri, USA, October 15 2009

environment. One example would be a robot controller. A
given network can move the robot at each time instance
t by an action y, which is based on sensor data x;. The
environment generates an observation o; and often also an
instantaneous cost C'(0;), according to the (usually unknown)
dynamics of the system. The aim is to discover a policy for
selecting actions that minimises a measure of a long-term
cost, i.e. the expected cumulative cost.

Reinforcement learning differs from supervised learning
in that correct input/output pairs are never presented, nor are
sub-optimal actions explicitly corrected. While this lack of
information makes reinforcement learning more flexible in its
application it also means that the algorithm has no immediate
hint in which direction to move in a (possibly very high-
dimensional) search space. Therefore one focus is always
on performance, which involves finding a balance between
exploration (of uncharted territory) and exploitation (of cur-
rent knowledge). The efficiency of a reinforcement learning
algorithm can be measured in the number of evaluations of
the cost function (“function evaluations™) it needs to find a
good solution. In the neuro-evolutionary methods considered
in this article (but not all) an evolutionary algorithm is
used for neural network training. Every function evaluation
requires at least one, and sometimes very many, evaluations
of the neural network. On the other hand, these methods can
help to avoid local minima [8] for which backpropagation
methods are well-known [9].

B. Related Work: Neuro-Evolution

Up to the late 90s only small neural networks have been
evolved by evolutionary algorithms [10]. According to Yao,
a main reason is the difficulty of evaluating the exact fitness
(negative cost) of a newly found structure: In order to fully
evaluate a structure one needs to find the optimal (or, some
near-optimal) parameters for it. However, the search for good
parameters for a given structure has a high computational
complexity unless the problem is very simple (ibid.).

In order to avoid this problem most approaches evolve the
structure and parameters of the neural networks simultane-
ously. Examples are EPNet [11], GNARL [3] and NEAT [4].
EPNet uses a modified backpropagation algorithm for pa-
rameter optimisation (a local method). Mutation operators
for searching the space of neural structures are addition and
deletion of neurons and connections (no crossover is used).
EPNet has a tendency to remove connections/nodes rather
than to add new ones. This is done to counteract “bloat” (i.e.
ever growing networks with only little fitness improvement;
called “survival of the fattest” in [12]). GNARL also does
not use crossover during structural mutation. However, it
uses an evolutionary algorithm for parameter optimisation.
Both parametrical and structural mutation use a “tempera-
ture” measure to determine whether large or small random
modifications should be applied—a concept known from
simulated annealing [13]. In order to calculate the current
temperature, the algorithm needs some knowledge about the
“ideal solution” to the problem, e.g. the best fitness expected
to be reached.

24

NEAT, unlike EPNet and GNARL, uses a crossover
operator that allows to produce valid offspring from two
given neural networks. It works by first aligning similar
or equal subnetworks and then exchanging differing parts.
Like GNARL, NEAT uses evolutionary algorithms for both
parametrical and structural mutation. However, the proba-
bilities and standard deviations used for random mutation
are constant over time. NEAT also incorporates the concept
of speciation, i.e. separated sub-populations that aim at
cultivating and preserving diversity in the population [12,
chap. 9].

C. Related Work: Speeding up Individual Evaluation in
Evolutionary Algorithms

1) Neural Networks in Dedicated Hardware: Most pub-
licised work on speeding up neural network evaluation is
through the use of hardware on which neural networks
are evaluated, and sometimes also trained. One main idea
is to implement the parallel data processing nature of
neural networks in reconfigurable circuits (such as “Field
Programmable Gate Arrays”, “FPGAs”) that offer massive
parallelism through their architecture.

Cabestany et al. discuss the status of some of the first ap-
proaches to implement artificial neural networks in hardware
in the late 90s [14]. They conclude that at the presented stage
(1996) no implementation exists that enables a feasible use
of existing systems in industry. One of the reasons given is
the lack of a proper software that facilitates the co-operation
and data exchange between host computer and the dedicated
hardware in a manner suitable for neural networks.

Moerland and Fiesler discuss technical limitations of hard-
ware for the implementation of neural networks and suitable
training algorithms [15]. These limitations are quantisation
effects (stemming from limited numerical precision of net-
work parameters in hardware implementations) and what
they call “hardware non-idealities” such as non-uniformities
found on analogue hardware. While the latter effects are no
longer relevant on modern implementations that use digital
circuitry the former still are. The authors conclude that a
precision of 16 bits for network weights is sufficient. They
also make a case for the integration of the training algorithm
into the hardware program and suggest suitable training algo-
rithms, since back-propagation and other standard methods
cannot be easily implemented in FPGAs.

Zhu and Sutton discuss the more recent developments in
an FPGA-specific survey [16]. This includes the use of re-
configuration capabilities of FPGAs during training. Even
with newer hardware boards the authors still call the imple-
mentation of neural networks in FPGAs “challenging” due
to the multiplication-intensive nature of network evaluations.
Their conclusions are somewhat inconclusive but in line with
those given by the previous authors; in particular, they see
a requirement for specialised learning algorithms adapted to
the nature of FPGAs since traditional algorithms cannot be
implemented efficiently into FPGAs.

2) Binary Code in Genetic Programming: Nordin pro-
poses a different approach [17]. He develops algorithms by

2nd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2009)
St. Louis, Missouri, USA, October 15 2009

— — =—Depth=0

— — =—Depth=1

— — =—Depth=2

(a) Original neural network

(b) Network in tree format

NO N1 N3 Ix Iy Iy N2 JF3 Ix Iy JRO
w=0.6 [w=0.8] W=0.9|W=0.1{w=0.4|w=0.5|w=0.2| w=0.3|w=0.7| w=0.8 |w=0.2
(c) Corresponding Linear Genome
Fig. 1. An example of encoding a neural network using a linear genome

genetic programming that are directly encoded in executable
machine code. The code is a fixed length program consisting
of 12 CPU instructions. Naturally, the execution speed of
this code is very high compared to an interpreted version of
the same instruction sequence, e.g. in LISP. Nordin reports a
speedup factor of approximately 1000. Even if the instruction
set (+,—,*,/), data access (number of variables) is fairly
limited, this is a very fast solution.

Harvey et al. evolve Java byte code with the help of
genetic programming [18], [19]. Their system, which they
call “bcGP” for “byte code genetic programming”, stores
individuals as member functions of Java class files (in
memory; each represents a population), which can be run
on a Java Virtual Machine (JVM). The instruction set uses
basic arithmetic operations (+,—,*,/) for regression tasks
and comparison operators for classification tasks. While the
authors call the performance of their system “efficient” they
also say that no speed comparison between byte code GP
and a corresponding high-level has been done. Considering
the code is run on a JVM, and with the overhead involved
in handling the class file it is probably not quite as fast
as Nordin’s direct machine code solution but may enable
a larger code complexity.

To our knowledge no publications exists on the subject
of machine code compilation of neural networks. While the
performance of genetic programming has been found to be
similar to that of neural networks on a range of problems [20]
the methods cannot easily be transferred.

III. OUR NEURO-EVOLUTIONARY METHOD:
EANT2

A. The Algorithm

EANT?2, “Evolutionary Acquisition of Neural Topologies
Version 27, is an evolutionary reinforcement learning system
that realises neural network learning with evolutionary al-
gorithms both for the structural and the parametrical part.
It is based on the previous method EANT [5] but uses
different algorithms for structural mutation and parameter
optimisation [21]. EANT2 represents neural networks and
their parameters in a compact genetic encoding, the “linear
genome”. It encodes the topology of the network implicitly

25

Initialisation
(minimal networks)

|

Structural Exploitation
(parameter optimisation with CMA-ES)

!

Selection
(rank-based but preserving diversity)

= @

No

Structural Exploration
(new individuals by structural mutation)

l

Fig. 2. The EANT2 algorithm. Please note that CMA-ES has its own
optimisation loop which creates a nested loop in EANT2.

by the order of its elements (genes). The following basic
gene types exist: neurons, network inputs, biases and forward
connections. There are also “irregular” connections between
neural genes which we call “jumper connections”. Jumper
genes can encode either forward or recurrent connections.
Figure 1 shows an example encoding of a neural network
using a linear genome. The figures show (a) the neural
network to be encoded. It has one forward and one recurrent
jumper connection; (b) the neural network interpreted as a
tree structure; and (c) the linear genome encoding the neural
network. In the linear genome, N stands for a neuron, I for
an input to the neural network, JF for a forward jumper
connection, and JR for a recurrent jumper connection. The
numbers beside N represent the global identification numbers
of the neurons, x and y are the inputs coded by input genes.
A linear genome can be interpreted as a tree based program
if one considers all the inputs to the network and all jumper
connections as terminals.

Linear genomes can be evaluated, without decoding, sim-
ilar to the way mathematical expressions in postfix notation
are evaluated. For example, a neuron gene is followed by
its input genes. In order to evaluate it, one can traverse the
linear genome from back to front, pushing inputs onto a
stack. When encountering a neuron gene one pops as many
genes from the stack as there are inputs to the neuron, using
their values as input values. The resulting evaluated neuron is
again pushed onto the stack, enabling this subnetwork to be
used as an input to another neuron. Connection (“jumper’)
genes make it possible for neuron outputs to be used as input
to more than one neuron, see JF3 in the example above.
Together with bias neurons the linear genome can encode
any neural network in a very compact format; its length is
equal to the number of synaptic network weights.

The steps of our algorithm, shown in Figure 2, are
explained in detail below.

Initialisation: EANT?2 usually starts with minimal initial
structures. A minimal network has no hidden layers or
recurrent connections, only 1 neuron per output, connected to

2nd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2009)
St. Louis, Missouri, USA, October 15 2009

some or all inputs. EANT2 gradually develops these simple
initial structures further using the structural and parametrical
evolutionary algorithms discussed below. On a larger scale
new neural structures are added to a current generation of
networks. We call this “structural exploration”. On a smaller
scale the current structures are optimised by changing their
parameters: “structural exploitation”.

Structural Exploitation: At this stage the structures in the
current EANT?2 population are exploited by optimising their
parameters. Parametrical mutation is realised using CMA-ES
(“Covariance Matrix Adaptation Evolution Strategy”) [22].
CMA-ES is a variant of Evolution Strategies that avoids
random adaptation of strategy parameters. Instead, the search
area spanned by the mutation strategy parameters, expressed
by a covariance matrix, is adapted at each step depending on
the current population. CMA-ES uses sophisticated methods
to avoid problems like premature convergence and is known
for fast convergence to good solutions even with multi-modal
and non-separable functions in high-dimensional spaces
(ibid.). It has been first successfully applied to reinforcement
learning of neural network weights by Igel [8].

Selection: The selection operator determines which pop-
ulation members are carried on from one generation to the
next. Our selection in the outer, structural exploration loop is
rank-based and “greedy”, preferring individuals that have a
larger fitness. In order to maintain diversity in the population,
it also compares individuals by structure, ignoring their pa-
rameters. The operator makes sure that not more than 1 copy
of an individual and not more than 2 similar individuals are
kept in the population. “Similar” in this case means that a
structure was derived from an another one by only changing
connections, not adding neurons.

Structural Exploration: In this step new structures are
generated and added to the population. This is achieved
by applying the following structural mutation operators
to the existing structures: Adding or removing a random
subnetwork, adding or removing a random connection and
adding a random bias. New hidden neurons are connected to
approx. 50 % of inputs; the exact percentage and selection
of inputs are random.

B. Comparison with Other Methods

EANT2 is closely related to the methods described in
the related work section above. One main difference is
the clear separation of structural exploration and structural
exploitation. By this we try to make sure a new structural
element is tested (“exploited”) as much as possible before
a decision is made to discard it or keep it, or before other
structural modifications are applied. Another main difference
is the use of CMA-ES in the parameter optimisation. Further
differences of EANT2 to other recent methods, e.g. NEAT,
are the absence of algorithm parameters that need to be
tuned to the problem (the method should be as universal as
possible) and the explicit way of preserving diversity in the
population (unlike speciation). More details on the algorithm
and an experimental comparison to NEAT on a robot learning
task can be found in [6].

26

Linear Genome
(evaluation needs parsing and extra branching)

Serialisation

Serial Representation
(evaluation needs parsing but no extra branching)

Compilation/Mapping

Binary Genome
(machine code without conditionals or branching)

Fig. 3. The compilation process where a Linear Genome is transformed
into the Binary Genome (machine code).

One main feature of EANT?2 is that the structure remains
fixed during structural exploitation. During this time the net-
work is evaluated thousands of times (depending on the given
task and fitness function, sometimes even millions of times)
before it is changed again during structural exploration. This
motivated us to examine how these many recurring sequences
of operations (same sequence of additions, multiplications
and activation function evaluations) on differing data could
be sped up.

IV. COMPILING NEURAL NETWORKS

The evaluation of a neural network, whether it be stack
based, tree based or based on any other complex structure, is
equivalent to the execution of a fixed set of operations. They
usually include recursive (or other) evaluation of neuron
(output) values used as input to other neurons as well as other
non-sequential operations. When these steps are executed this
results in several if statements and branches in the ma-
chine code, e.g. in the compiled C++ code that implements
network evaluation by traversing the relevant structures in a
NeuralNetwork class. From a computational point of view
branches usually imply a speed penalty at the CPU level,
where any branch that was not predicted by CPU internal
mechanisms usually means that the instruction pipeline needs
to be flushed and rebuilt. Further slowdowns occur when the
machine code in the branch is not contained in the instruction
(memory) cache. As a result of these issues is a considerate
overhead in the number of CPU instructions and wait times
is introduced by the non-serial nature of the traversal through
the neural network representation in memory. This is all
in addition to the actual parsing, which usually involves
switch/case statements e.g. when determining the type of a
neuron input (network input, bias, output of other neuron,
simple connection, recurrent connection etc.).

The goal in our network compilation is to analyse the
operations needed for the evaluation of a neural network,
log them and discard those operations to maintain the struc-
tural overhead, i.e. object management, conditionals, casts,
function calls, jumps etc. The logged set of operations is
then coded in binary (machine) code. To achieve this, the
mathematical operations that are necessary for the calculation
of the output values are first extracted from the network
in a step we call Serialisation. Afterwards these operations

2nd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2009)
St. Louis, Missouri, USA, October 15 2009

are translated into processor opcodes (Compilation). For
technical reasons explained below, these opcodes need to be
mapped into a data area that allows their execution (Memory
Mapping). The result of this process is then called the “binary
genome”. Figure 3 illustrates this process.

A. Serialisation

Serialisation is basically done by recursively evaluating
the network and at the same time protocolling the neuron
dependencies. Assume for a moment that no recurrent con-
nection is present. Then an ordered list (L, <) of neurons
can be defined such that

VnomeLn#m:n<mVm<n, (D

where a neuron n can be directly calculated from the
elements of {m € L|m < n}. The existence of such a list is
given by the existence of an evaluation of the neural network.

Obviously, all input neurons are on the bottom of the
ordered list. If a recurrent connection is present, it will
be handled like an input neuron with value O in the first
evaluation and the preceding neuron value in the following
evaluations.

In the given pseudo-code, In denotes the list of input
neurons and Out the list of output neurons. For every neuron
n, n—>incident [] is the list of incident neurons, i.e. the
list of neurons its value is calculated from. For every list
let —>size denote the number of elements in the list. The
generation of the complete list L is accomplished by the
following algorithm:

function evaluate(n, list)

{

for (i := 1 to n—->incident->size)
if (n->incident[i] 1is not in L)
evaluate (n—->incident[i],L);

L->push(n);
return L;

function generate_list ()

{

L empty;

for (i 1 to In->size)
L->push(In[i]);

1 to Out->size)
L);

for (i
L evaluate (Out[i],

return L;

It can easily be seen that after execution L contains every
neuron that is needed to calculate the output neuron values
in the defined order. This order now allows to generate an
ordered set of instructions needed to evaluate the network.

Let a be the activation function. Each neuron value
v(n),n € L, is calculated by the weighted sum of its incident

27

neurons and the activation function:
li(n)]
> w(n,i(n);) v (i(n);) |,

Jj=0

VneL:v(n)=a 2)

where i(n) is the list of neurons incident to n and w(n,m)
denotes the corresponding weight for each incident neuron
m € i(n) to n. The network evaluation is now simplified
to the iterative application of the following steps (for each
neuron):

1) pop the first non-input neuron item from the list of
neurons
add up the weighted inputs of that neuron
apply the activation function, and
store the neuron value.

2)
3)
4)

B. Compilation

The generation of the corresponding opcode is now
straightforward except for the activation function. In most
cases this function is not available as a machine instruction
(e.g. hyperbolic tangent). Since implementation of such
functions can be tedious, the usage of the algorithm provided
by the C++ libraries is expedient. Such a function call is easy,
if the calling convention as well as the position to jump at
is known. This is not the case, if the function is a member
function or is defined via templates. In this case a reliable
jump point has to be created manually in the C++ code,
forwarding the program jump to its actual destination.

In the following the 32-bit case without SSE support is
described. For a better readability assembler commands are
used to represent the opcode (since FADD is easier to read
than 0xDC 0xCO0).

Before a program is generated, memory is allocated to
store the current neuron values and the current weights. This
way, the memory addresses, the opcode has to access, are
fixed and can be “hard coded” into the opcode, so a runtime
calculation of memory addresses is not necessary.

To prepare the CPU for the evaluation code, three things
have to be done:

1) back up the register that is used

2) pass the jump destination address of the activation

function

3) back up the floating point unit and floating point stack’.

The first two tasks are accomplished directly by the C++
assembler framework, (which is used to actually jump from
C++ code into the generated opcodes), if the usage of certain
registers is proposed. The activation function address can be
written directly into a register by the embedded assembler.

The floating point units state can be saved by calling:

fldsv [backup_addr]

An appropriate memory space has to be allocated in advance.
After evaluation, the unit state and the stack can be restored
by executing:

I'The floating point stack is part of the floating point unit of the processor.
Floating point values are usually not stored in registers like integer values
but on a register stack.

2nd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2009)
St. Louis, Missouri, USA, October 15 2009

fldrst [backup_addr]

These commands are the first and the last commands in every
generated program.

The calculation of a neuron value starts by pushing a zero
onto the floating point stack as the current weighted input
sum:

fldz

For every incident neuron connection first the correspond-
ing neuron value is pushed onto the stack followed by
a command that multiplies the top value from the stack
with a value fetched from memory, which, in this case, is
the corresponding weight. This operation is followed by an
operation that pops two values from the floating point stack
and pushes their sum onto the stack again. Now the new sum
is on top of the stack and the next incident neuron can be
evaluated:

fld [neuron_addr]
fmul [weight_addr]
fadd

After regarding every incident neuron value this way, the
activation function is called and the resulting value is stored
in the neuron array:

call eax

fst [neuron_addr]

After every neuron is calculated this way, the generated code
jumps back to its location it was called from:

return

The neuron value array now contains all calculated values.
Because of the ordered evaluation, each calculation only
accessed already calculated neuron values.

C. Memory Mapping

Execution of generated data is an activity every modern
operation system is intended to terminate immediately due to
security reasons. The execution of data memory is a strong
indication of a buffer overflow, which could be exploited
by malicious software, or maliciously crafted data. Most
Unix systems have been performing such checks via software
for many years. The recent introduction of the NX-bit—
a hardware solution to prevent the execution of program
generated data—brought an even more powerful execution
prevention, i.e. the execution of generated data is impeded
by the system in every way possible.

The realtime compilation and execution of EANT2 net-
works is based on a trick applying the I/O memory mapping
functionality of Unix systems. /O memory mapping is
usually used to load files or other peripheral device data
directly into memory to circumvent the standard I/O data
loading behaviour. Such data is loaded completely into a
dedicated memory area and is then mapped onto a memory
address the executed program can access. A file can either be
mapped as read-only-executable or as read-write-accessible

28

[Network size | 40] 84 | 130 |
Linear Genome 54457 ms | 18796.7 ms | 30171.3 ms
Binary Genome 1037.9 ms 1552.4 ms 2042.3 ms

[Compilation time]| 8.8 ms | 16.0 ms | 242 ms |

TABLE I

EXECUTION TIMES DEPENDING ON NEURAL NETWORK COMPILATION

memory. What EANT?2 does is to map a virtual file twice
into memory, once in executable mode and once in read-write
mode. These two file mappings are presented to EANT2 by
the system as two different memory locations, but a memory
access will be resolved to the same file buffer location in the
physical memory. To execute a neural network, the generated
opcode is copied to the read-write memory location and is
then executed by jumping (via embedded assembler) to the
execution-memory. A slow down due to hard disk access
does not exist because the file is “fully buffered” in the RAM,
so no byte of the generated data is actually written to disk.

V. EXPERIMENTS

To get an idea about the speed up, measurements of
several evaluations using networks of different sizes were
performed. All results are compared to the standard evalua-
tion time of the linear genome. For a correct interpretation
of this comparison it is important to note that the linear
genome structure is already designed for efficient evaluation.
The stack based, linear representation (see Section III-A)
allows a straight evaluation in one pass and avoids repeated
evaluations of sub-networks through a caching mechanism.
The C++ code was compiled using the GNU C++ compiler
with the “-O3” optimisation flag. The time measurements
considered are the CPU times for 1,000,000 evaluations,
which in our robotics experiments is an average number of
evaluations for the parameter optimisation in EANT2. The
tests were performed on an AMD Athlon 3000+ GNU/Linux
system, using GCC version 4.3.3. Measurements of the
binary genome’s compilation time and the 1,000,000-fold
evaluation of networks of size 40, 84 and 130 (number of
synaptic connections) are given in Table I.

It can be seen that the execution speed of the “binary”
(compiled) genome if about 5-10 times faster for typical
networks, and increases with the network size. It can also be
seen that the compilation time is insignificant compared to
the speed gained by the binary evaluation if many evaluations
are performed.

In practice, the fitness function that is used by the opti-
miser does not only consist of the network evaluation but
also the interpretation of the network output. Depending on
the task at hand and its implementation, the speed advantage
may of course be more or less significant for the overall
time needed to calculate a network’s fitness value. In one
of our practical applications of EANT2, where a robot
movement and image acquisition is simulated after each
network evaluation, the overall speed increased by a factor
of 3—4 through the introduction of the binary genome. Over

2nd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2009)
St. Louis, Missouri, USA, October 15 2009

time, as the networks increase in size, the speed advantage
becomes more pronounced.

VI. CONCLUSIONS

We have presented a method to speedup the calculation
of a neural network’s output by transforming the internal
representation into binary machine code. This helps to alle-
viate one problem neuro-evolutionary algorithms still have
nowadays: they are slow, i.e. they need many evaluations of
the fitness function/neural networks before they find a good
solution to a robot learning problem.

In the evolutionary process that optimises the network’s
parameters the network only needs to be “compiled” once;
new parameter values are taken from a given array of current
values.

Our experiments have shown that the compilation speeds
up the evaluation time of a neural network by a factor of
approximately 5-10, depending on the network size. With
larger networks, the speedup factor is also larger.

REFERENCES
[1] W. S. Sarle, “Ill-conditioning in neural networks,”
Website, SAS Institute Inc., Cary, USA, September 1999,

ftp://ftp.sas.com/pub/neural/illcond/illcond.html.

R. E. Bellman, Adaptive Control Processes. Princeton, USA: Prince-
ton University Press, 1961.

P. J. Angeline, G. M. Saunders, and J. B. Pollack, “An evolutionary al-
gorithm that constructs recurrent neural networks,” IEEE Transactions
on Neural Networks, vol. 5, no. 1, pp. 54-65, 1994.

K. O. Stanley and R. P. Miikkulainen, “Evolving neural networks
through augmenting topologies,” Evolutionary Computation, vol. 10,
no. 2, pp. 99-127, 2002.

Y. Kassahun and G. Sommer, “Efficient reinforcement learning
through evolutionary acquisition of neural topologies,” in Proceedings
of the 13th European Symposium on Artificial Neural Networks
(ESANN 2005), Bruges, Belgium, April 2005, pp. 259-266.

N. T. Siebel and G. Sommer, “Evolutionary reinforcement learning of
artificial neural networks,” International Journal of Hybrid Intelligent
Systems, vol. 4, no. 3, pp. 171-183, October 2007.

C. M. Bishop, Neural Networks for Pattern Recognition.
UK: Oxford University Press, 1995.

[2]
[3]

[4]

[5]

[6]

[7] Oxford,

29

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

C. Igel, “Neuroevolution for reinforcement learning using evolution
strategies,” in Proceedings of the IEEE Congress on Evolutionary
Computation (CEC 2003). 1EEE Press, 2003, pp. 2588-2595.

J. C. Spall, Introduction to Stochastic Search and Optimization:
Estimation, Simulation, and Control. =~ Hoboken, USA: John Wiley
& Sons, 2003.

X. Yao, “Evolving artificial neural networks,” Proceedings of the
IEEE, vol. 87, no. 9, pp. 1423-1447, September 1999.

X. Yao and Y. Liu, “A new evolutionary system for evolving artificial
neural networks,” IEEE Transactions on Neural Networks, vol. 8,
no. 3, pp. 694-713, May 1997.

A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing.
Berlin, Germany: Springer Verlag, 2003.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,” Science, vol. 220, no. 4598, pp. 671-680, May
1983.

J. Cabestany, P. Ienne, J. M. Moreno, and J. Madrenas, “Is there a
future for ANN hardware?” in Proceedings of the Workshop on Mixed
Design of Integrated Circuits and Systems, Lodz, Poland, May 1996,
pp. 419-424.

P. Moerland and E. Fiesler, “Neural network adaptations to hardware
implementations,” Dalle Molle Institute for Perceptive Artificial Intel-
ligence, Martigny, Valais, Switzerland, Research Report 97-17, 1997.
J. Zhu and P. Sutton, “FPGA implementations of neural networks —
a survey of a decade of progress,” in Proceedings of the 13th Inter-
national Conference on Field Programmable Logic and Applications
(FPL 2003), Lisboa, Portugal, September 2003, pp. 1062-1065.

P. Nordin, “A compiling genetic programming system that directly
manipulates the machine code,” in Advances in Genetic Programming,
K. E. Kinnear, Ed. Cambridge, USA: MIT Press, 1994, vol. 2, ch. 14,
pp. 311-a331.

B. Harvey, J. A. Foster, and D. Frincke, “Byte code genetic program-
ming,” in Late Breaking Papers at the Genetic Programming 1998
Conference (GP-98), Madison, USA, July 1998, (no page numbers).
——, “Towards byte code genetic programming,” in Proceedings
of the Genetic and Evolutionary Computation Conference (GECCO
1999), vol. 2, Orlando, USA, 1999, p. 1234.

M. Brameier and W. Banzhaf, “A comparison of linear genetic
programming and neural networks in medical data mining,” IEEE
Transactions on Evolutionary Computation, vol. 5, no. 1, pp. 17-26,
February 2001.

N. T. Siebel and Y. Kassahun, “Learning neural networks for visual
servoing using evolutionary methods,” in Proceedings of the 6th
International Conference on Hybrid Intelligent Systems (HIS 06),
Auckland, New Zealand, December 2006, p. 6 (4 pages).

N. Hansen and A. Ostermeier, “Completely derandomized self-
adaptation in evolution strategies,” Evolutionary Computation, vol. 9,
no. 2, pp. 159-195, 2001.

2nd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2009)
St. Louis, Missouri, USA, October 15 2009

30

2nd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2009)
St. Louis, Missouri, USA, October 15 2009

Path Planning for a Mobile Robot Using Self Tuning Fuzzy Logic
Controller

Iraj Hassanzadeh, and Sevil M. Sadigh

Abstract—This paper presents a fuzzy logic controller self
tuning using Self Organizing Map neural network (SOM) for
near the optimal time path planning for a mobile robot to avoid
obstacles in unknown environments. A SOM neural network is
applied to modify the input and output membership functions of
the fuzzy controller automatically. A Matlab application, Kiks
11, is used to simulate a Khepera II robot. Also, this approach is
implemented by Khepera II robot. It is also shown that the
proposed method outperforms the FLC approach.

I. INTRODUCTION

Over the last few years, a number of studies were reported
concerning machine learning, and how it has been applied to
help mobile robots to improve their operational capabilities.
One of the most important issues in the design and
development of intelligent mobile system is the navigation
problem. This consists of the ability of a mobile robot to
plan and execute collision-free motions within its
environment. However, this environment may be imprecise,
vast, dynamical and either partially or non-structured [4]. In
such environment, motion planning depends on the sensory
information of the environment, which might be associated
with imprecision and uncertainty. Thus, to have a suitable
motion planning scheme in a cluttered environment, the
controller of such kind of robots must have to be adaptive in
nature. Recently, [2] have made an extensive survey on the
navigational schemes of mobile robots moving among
dynamic obstacles.

Soft computing includes fuzzy logic, genetic algorithm,
neural network and their different combinations [2, 3] and it
can solve such complex real-world problems within a
reasonable accuracy. The computational complexity of such
methods is also expected to be low, due to their heuristic
nature.

Since artificial neural networks (ANN) have the ability to
learn the situations, many investigators have successfully
applied the neural network [4, 5 and 6] to develop the model
related to the navigation problem of a mobile robot. Janglova
[4] used two NNs, one to determine the free space using
ultrasound range finder data and the other to find a safe
direction for the next robot section of the path in the
workspace while avoiding the nearest obstacles. Kian Hsiang

Iraj Hassanzadeh is with the Faculty of electrical and computer engineering
University of Tabriz, Tabriz, Iran (e-mail: Izadeh@tabrizu.ac.ir).

Sevil M. Sadigh is with the Faculty of electrical and computer engineering
University of Tabriz, Tabriz, Iran (e-mail: s_msadigh@yahoo.com).

31

Low [5] used self-organizing neural network to perform fine,
smooth motor control that moves the robot through the
checkpoints. Botelho [6] used Boolean NNs such as RAM
and GSN models for controlling of robot navigation. Since
these NNs have high speed processing, the decision rate are
increased.

We know that NNs have the ability to learn the situations,
but with some neural networks, knowledge representation
and extraction are difficult.

Fuzzy systems have the ability to make use of knowledge
expressed in the form of linguistic rules, thus they offer the
possibility of implementing expert human knowledge and
experience. Their main drawback is the lack of a systematic
methodology for their design. Usually, tuning parameters of
membership functions is a time consuming task. Genetic
Algorithm or Neural network learning techniques can
automate this process, significantly reducing development
time, and resulting in better performance. Kun Hsiang Wu
[8] used a genetic-based adaptive fuzzy controller to
navigate the robot.

In this paper is used fuzzy logic controller (FLC) for solving
the navigation problems of a mobile robot and for tuning
parameters is used SOM that the parameters are tuned
automatically. The performance of this approach, to generate
collision-free path of a robot, are compared with FLC.

The organization of the paper is as follows: section 2
describes the fuzzy logic controller (FLC) approach for path
planning. Self tuning membership functions using SOM
describes in section 3. Simulation and implementation results
will be included in section 4. Section 5 will summarize our
conclusions.

II. FUZZY LOGIC CONTROLLER (FLC)

In actual navigation, information of the input variables
collected by using the camera or sensor might be imprecise
in nature [2]. Thus, fuzzy logic controller could be a
potential candidate for solving this problem. Two major
approaches FLC are Mamdani Approach and Takagi and
Sugeno Approach.

In Mamdani Approach, the condition and action variables of
the FLC are expressed in terms of membership function
distributions. Figurel shows the membership function
distributions of both the input and output variables. The
input variables are distance and angles that explain
condition’s obstacle to robot. The range of distance is
divided into three linguistic terms, namely Near (NR), mid

2nd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2009)
St. Louis, Missouri, USA, October 15 2009

(MID) and far (FR). The range of angle is divided into five
terms: left (LT), ahead left (AL), ahead (AH), ahead right
(AR) and right (RT). For output variables, five linguistic
terms are considered: back slow (BS), zero (Z), forward slow
(FS), forward mid (FM) and forward fast (FF).

In Takagi and Sugeno Approach, the membership function
distributions of the input variables have been assumed to be
the same as shown in Fig. 1, whereas the outputs may be
expressed like the following:

IF Al AND Bla THEN Z1=a; X +b1 y +c4 & Zr=a; X +b2 y +c,

Where A;, B, are labels of fuzzy sets, x and y are input
variables, z; and z, are output of FLC and a;, b, a,, b, are
the coefficients of the input variables and c¢;, ¢, are the
constants. With three choices for distance and five choices
for angle, there could be 3 x 5 or 15 possible combinations
of two different condition variables. Thus, there is a
maximum of 15 rules present in the rule base that are shown
in Table I.

FLC structure has 5 stage or layer. The first layer transmits
input values to the next layer using linear transfer function.
The next layer is the fuzzification layer, in which the
membership function values of the input variables are
determined corresponding to input conditions. Third layer is
the layer of rule base that defines the fuzzy rules. The output
of every neuron in this layer is the multiplication of their two
incoming signals:

O3, = Oy X Oy (D
Where Oy, is the output of the neuron n in layer 3 and Oy,
O,; are the outputs of the neurons i, j in layer 2, respectively.

1.0
o o
T 'y
@ = [=
= = |

0.0 . X

-80 40 0.0 40 B0
Distance (cin) —» Angle (deg) —=
BS

FS FM FF
0 A /

value

Membership

o
o

11 1635

-55 00 335

o) & o4 (cmisec) —

Fig. 1. Membership function distributions for input and output
variables of the FLC

32

TABLE 1
RULE BASE OF THE FLC FOR DITERMINING VELOCITY OF THE
WHEELS.
Angle
LT AL AH AR RT
NR FF FF FF FS FF
MID FF FF FF FS FF
FR FF FS FM Z FF
[
Angle
LT AL AH AR RT
NR FF FS BS FF FF
MID FF FS BS FF FF
FR FF BS Z FM FF
O]

o= the speed of left wheel, o,= the speed of right wheel

4th layer is the layer of Consequence, which identifies the
fired rules for a set of inputs. The connecting weights
between the 4th and 5th layers indicate the membership
function distributions of the output variables. Once the
membership function distributions are known, this layer
calculates the output of all the fired rules.

The last layer is defuzzification layer, which converts the
fuzzified output to its corresponding crisp value. A center of
sums method is adopted for defuzzification. The final output
O; of the ikth neuron lying in this layer can be expressed as
follows:

2

Where A;x and My, are the area and center of area for kth
fired rule of ith output, respectively.

The performance of an FLC is influenced by its knowledge
base (KB). Thus, it is essential to tune the KB of the fuzzy
logic controller to get a better performance. Since the tuning
can be viewed as an optimization process, either a neural
network (NN) or a genetic algorithm (GA) offers a
possibility to solve this problem. Here we use Self
Organizing Map neural network (SOM) for tuning KB.

III. SELF TUNING FLC

The aim of this paper is to tune the centers of membership
functions (MFs) automatically. The Self Organizing Map
(SOM) is an unsupervised neural network. Thus, could be

2nd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2009)
St. Louis, Missouri, USA, October 15 2009

useful for reaching this aim. Topology of SOM neural
network is shown in Fig. 2.

The algorithm has two steps, each step having different
method. The centers of input membership functions are
tuned first. After, tuning of output membership functions is
processed.

x()

Fig. 2. Topology of SOM neural network

A. Tuning of input membership functions

Tuning of input MFs is begins by feeding the input
variables of FLC to SOM networks. The neuron whose value
has smallest distance with the input is selected as winning
neuron. The winning vector and its neighbors are updated by

w(t)z w(t—l) + [ahv(t) (x(t)-w(t—l))] (3)

Where w(t) is the weight vector of neurons, x(t) denotes the
input network, o represents the learning rate. o« decrease

monotonically with t and hv(t) is the neighborhood of the
winning neuron and is obtained by

(7h(vn7i)2)

— o’

hV(t)

O,

c+de 4

a+be™ (5)

Where nv is the number of the winning neuron, i denotes the
number of the updating neuron, a,b,c,d and h are constant
coefficients and determine the radius neighborhood. hv(t)
and o, decrease with t. also, hv(t) decrease with keeping out
of the way from the winning neuron.

Fig. 3. Khepera 11

33

After updating neurons, the next input is fed to SOM
networks, the winning neuron is selected and the neurons are
updated again. Iterations proceed until a pre-specified
number is satisfied.

B. Tuning of output membership functions

This step is different from before step at how selecting of the
winning neuron and updating neurons. In the before step, the
neuron whose value is smallest distance with the input is
selected as winning neuron. But in this step, the neuron
whose value has the most firing strength of the fuzzy rule is
selected as winning neuron.

The winning vector and its neighbors are updated by

w(t)= w(t=1) + [ahv(t) (c(t)-w(t-1))] (6)
Where w(t) is the weight vector of neurons, c(t) denotes the
value of the winning neuron, X represents the learning rate
and decrease monotonically with t. hv(t) is the
neighborhood of the winning neuron and is obtained by
equation (4) and (5).

Algorithm proceeds similar to previous method.

IV. SIMULATION AND IMPLEMENTATION RESULTS

In order to compare the self tuning FLC by SOM with the

FLC, two approaches have been applied to control the
Khepera mobile robot [1] for the obstacle avoidance task by
using kiks [9] (Khepera Simulator). KiKS is an abbreviation
for”’Kiks is a Khepera Simulator”. The program is a Matlab
application that simulates a Khepera II robot connected to
the computer in a very realistic way. The simulated Khepera
is controlled from Matlab in the same way as real, physical
Kheperas. (For more details see [9]).
Khepera is a miniature mobile robot (Fig. 3) developed in
the Microcomputing Laboratory of Swiss Federal Institute of
Technology [1]. It has a cylindrical shape, measuring 55 mm
in diameter and 30 mm in height and its weight is only 70 g.
The robot has two DC motors and eight analogue infra-red
(IR) proximity sensors (Fig. 4).

Fig. 4. Position of the sensors on the Khepera mobile robot

2nd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2009)
St. Louis, Missouri, USA, October 15 2009

The task is to an autonomous mobile robot with a path
planning and intelligent control should move among
obstacles without collision them to reach the target. First, the
robot rotates toward target and moves with a fixed speed for
a time step while detecting obstacle. When robot detects any
obstacle by IR sensors, FLC is to be activated. Otherwise,
the robot moves with a fixed speed for a time step. The
inputs of FLC are distance and angle between robot and
obstacle. The value of distance and angle are calculated
using data sensors of the robot and with the vectorial course.
For simplicity calculations and since the robot move toward
front, for determining distance and angle are used data of the
front sensors (i.e. 0, ..., 5). The outputs of FLC are the speed
of wheels. They are applied to robot’s wheels and the robot
rotates until doesn’t collide obstacle then it will rotate
toward target. This process will continue, until the robot
reaches the target.

In this work, comparison studies among the FLC and the
self-tuning FLC algorithms are carried out. The rule base is
set manually based on intuition and is same for the both
algorithms. The knowledge base of FLC is set manually
based on intuition but the knowledge base of self tuning FLC
algorithm is tuned by SOM (see section3).

For the proposed self tuning FLC, the maximum learning
rate 1S o = 1.5; the constant coefficients of input MFs are a
= 1.5, b=7.5, ¢ = 0.5, d = 0.05 and h = 10; the constant
coefficients of output MFs are a = 1.5, b=5.5,c=1,d = 0.05
and h=10;

The testing scenarios were doing in the environments that as
not use for tuning parameters of FLC, i.e. the unknown
environment for the robot. The simulation is carried out for
three different scenarios (path planning with 2, 4 and 12
obstacles in the unknown environments in the first, 2" and
3" scenarios, respectively) and is presented in figs. 5-10.
Also, the implementation results are presented in fig. 11.
Numerical calculation results for these two methods are
shown in Tables II, III and IV. TOC denotes the time of
competition (the time of robot motion from start point to
target), NoH represents the number of hits of the robot with
the obstacles. ASR is average of speed robot during path and
RDP denotes error of deviation of travelling path from
optimal path for each scenario.

The results show that total time traveling of robot and length
travelling path of robot with self tuning FLC by SOM is
lower and smoother than FLC.

V. CONCLUSION

In this paper, self tuning FLC method is used to plan path
for a mobile robot while avoiding obstacles. In this method,
MFs are tuned automatically. Also, this method is simple.
Results show this method acts successfully and robot move
among obstacles without collision them in unknown
environment. Also, the simulation and implementation
results show that total time traveling of robot and length

34

travelling path of robot with self tuning FLC is lower and

smoother than FLC.
TABLE I
FLC
TOC (sec) ASR RDP (mm)

(cm/sec) No. H
Scenario 1 12.4530 11.9130 0 90
Scenario 2 17.5700 8.8814 0 134.5
Scenario 3 18.2145 8.9002 0 127.23

TOC = time of competition, ASR = average of speed robot, No.H =
Number of hits, RDP = error of deviation of travelling path from optimal
path for each scenario

TABLE III
SELF TUNING FLC WITH SOM.
TOC (sec) ASR RDP
(cm/sec) No. H (mm)
Scenario 1 10.6480 13.301 0 31.19
Scenario 2 14.3980 10.3190 0 36.99
Scenario 3 15.2010 10.3158 0 78.39

TOC = time of competition, ASR = average of speed robot, No.H =
Number of hits, RDP = error of deviation of travelling path from optimal
path for each scenario

TABLE IV
IMPLEMENTATION RESULTSUSING FLC AND SELF TUNING FLC
TOC (sec) ASR RDP
(cm/sec) No. H (mm)
FLC 17.594 8.0552 0 70.22
Self tuning
FLC 10.969 9.9046 0 19.85

TOC = time of competition, ASR = average of speed robot, No.H =
Number of hits, RDP = error of deviation of travelling path from optimal
path for each scenario

Fig. 5. Scenario 1: path planning with 2 obstacles in the unknown

environment with FLC

2nd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2009)
St. Louis, Missouri, USA, October 15 2009

Fig. 6. Scenario 2: path planning with 4 obstacles in the unknown Fig. 9. Scenario 2: path planning with 4 obstacles in the unknown
environment with FLC environment with self tuning FLC by SOM

Fig. 7. Scenario 3: path planning with 12 obstacles in the unknown Fig. 10. Scenario 3: path planning with 12 obstacles in the unknown
environment with FLC environment with self tuning FLC by SOM

1000
900
800

7000 self tuning FLC

600

500 -

400

300

200+

100

0 I I
0 100 200 300 400 500 600 700 800 900 1000

Fig. 11. Implementation of path planning in the unknown environment with
Fig. 8. Scenario 1: path planning with 2 obstacles in the unknown FLC and self tuning FLC by SOM

environment with self tuning FLC by SOM

REFERENCES

[11 K-Team, “Khepera user manual version 5.02,” Lausanne, 12 March
1999.

[2] NirmalBaran Hui,V.Mahendar, Dilip Kumar Pratihar, “Time-optimal,
collision-free navigation of a car-like mobile robot using neuro-fuzzy
approaches,” Fuzzy Sets and Systems 157 (2006) 2171-2204.

[3] Jelena Godjevac, Nigel Steele, “Neuro-fuzzy control of a mobile
robot,” Neurocomputing 28 (1999) 127-143.

35

2nd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2009)
St. Louis, Missouri, USA, October 15 2009

[4] Danica Janglova, "Neural Networks in Mobile Robot Motion,” Neural
Networks in Mobile Robot Motion, pp. 15-22, Inernational Journal of
Advanced Robotic Systems, Volume 1 Number 1 (2004), ISSN 1729-
8806.

[5] Kian Hsiang Low, Wee Kheng Leow, Marcelo H.Ang Jr., “Integrated
Planning and Control of Mobile Robot with Self-Organizing Neural
Network,” Proc.18th IEEE ICRA’02,vol.4,pp.3870-3875,May11-15,
2002, Washington, D.C..

[6] Silvia S.C. Botelho, Eduardo do Valle Simdes, Luis Felipe Uebel &
Dante Barone “High speed Neural Control for Robot Navigation,”
Porto Alegre,RS 91501-970,Brazil.

[7] Jyh-Shing Roger Jang, “ANFIS: Adaptive-Network-Based Fuzzy
Interence System,” IEEE Transactions on systems, man, and
cybernetics, vol.23, no. 3, may/june 1993.

[8] Kun Hsiang Wu, Chin Hsing Chen and Jiann Der Lee, “Genetic-
Based Adaptive Fuzzy Controller for Robot Path Planning,” 0-7803-
3645-3/96 © 1996 IEEE.

[91 Theodor Storm, “KiKS is a Khepera Simulator, user guide”

[10] Sung Hoe Kim, Chongkug Park, Member, IEEE, and Fumio
Harashima, Fellow, IEEE, “A Self-Organized Fuzzy Controller for
Wheeled Mobile Robot Using an Evolutionary Algorithm” IEEE
TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 48,
NO. 2, APRIL 2001.

36

